People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kibsgaard, Jakob
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Stable mass-selected AuTiOx nanoparticles for CO oxidationcitations
- 2024Stable mass-selected AuTiO x nanoparticles for CO oxidationcitations
- 2023Ni 5-x Ga 3+x Catalyst for Selective CO 2 Hydrogenation to MeOH :Investigating the Activity at Ambient Pressure and Low Temperature with Microreactors
- 2023Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidationcitations
- 2023Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidationcitations
- 2023Ultra-high vacuum compatible reactor for model catalyst study of ammonia synthesis at ambient pressurecitations
- 2023Ni5-xGa3+x Catalyst for Selective CO2 Hydrogenation to MeOH
- 2022Quantitative operando detection of electro synthesized ammonia using mass spectrometrycitations
- 2022Increasing Ammonia Formation Rates of Li-Mediated Ammonia Synthesis with High Surface Area Copper Electrodes
- 2020The Dissolution Dilemma for Low Pt Loading Polymer Electrolyte Membrane Fuel Cell Catalystscitations
- 2019A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements.citations
- 2019A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurementscitations
- 2017Effects of Gold Substrates on the Intrinsic and Extrinsic Activity of High-Loading Nickel-Based Oxyhydroxide Oxygen Evolution Catalystscitations
- 2016Mesoporous platinum nickel thin films with double gyroid morphology for the oxygen reduction reactioncitations
- 2007Cobalt growth on two related close-packed noble metal surfacescitations
Places of action
Organizations | Location | People |
---|
article
The Dissolution Dilemma for Low Pt Loading Polymer Electrolyte Membrane Fuel Cell Catalysts
Abstract
<p>Cost and lifetime currently hinder widespread commercialization of polymer electrolyte membrane fuel cells (PEMFCs). Reduced electrode Pt loadings lower costs; however, the impact of metal loading (on the support) and its relation to degradation (lifetime) remain unclear. The limited research on these parameters stems from synthetic difficulties and lack of in situ analytics. This study addresses these challenges by synthesizing 2D and 3D Pt/C model catalyst systems via two precise routes and systematically varying the loading. Pt dissolution was monitored using on-line inductively coupled plasma mass spectrometry (on-line-ICP-MS), while X-ray spectroscopy techniques were applied to establish the oxidation states of Pt in correlation with metal loading. Dissolution trends emerge which can be explained by three particle proximity dependent mechanisms: (1) shifts in the Nernst dissolution potential, (2) redeposition, and (3) alteration of Pt oxidation states. These results identify engineering limitations, which should be considered by researchers in fuel cell development and related fields. </p>