People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Djuandhi, Lisa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
In situ synchrotron XRD and sXAS studies on Li-S batteries with ionic-liquid and organic electrolytes
Abstract
Lithium-sulfur (Li-S) batteries are a promising technology capable of reaching high energy density of 500-700 Wh kg-1, however the practically achievable performance is still lower than this value. This hindrance can be attributed to a lack of understanding of the fundamental electrochemical processes during Li-S battery cycling, in particular the so-called redox shuttle effect which is due to the relatively high solubility of polysulfide intermediates in the electrolyte. Herein, the effects of LiNO3 as an additive as well as C4mpyr-based ionic liquids (ILs) in electrolyte formulations for Li-S cells are analysed using in situ X-ray powder diffraction (XRD) and ex situ soft X-ray absorption spectroscopy (sXAS) techniques. Whilst LiNO3 is known for its protective properties on the lithium anode in Li-S cells, our studies have provided further evidence for suppression of Li2S deposition when using LiNO3 as an additive, as well as affecting the solid electrolyte interphase (SEI) layer at a molecular level. Moreover, the detected sulfur species on the surface of the anode and cathode, after a few cycles are compared for IL and organic- based electrolytes.