People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nikiforov, Aleksey
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020CsH2PO4 as Electrolyte for the Formation of CH4 by Electrochemical Reduction of CO2citations
- 2014Development of Non-Platinum Catalysts for Intermediate Temperature Water Electrolysis
- 2013Development and Study of Tantalum and Niobium Carbides as Electrocatalyst Supports for the Oxygen Electrode for PEM Water Electrolysis at Elevated Temperaturescitations
- 2012Nickel and its alloys as perspective materials for intermediate temperature steam electrolysers operating on proton conducting solid acids as electrolyte
- 2012WC as a non-platinum hydrogen evolution electrocatalyst for high temperature PEM water electrolyserscitations
- 2012Development of Refractory Ceramics for The Oxygen Evolution Reaction (OER) Electrocatalyst Support for Water Electrolysis at elevated temperaturescitations
- 2011Corrosion behaviour of construction materials for high temperature steam electrolyserscitations
- 2011Corrosion behaviour of construction materials for high temperature steam electrolyserscitations
- 2011New Construction and Catalyst Support Materials for Water Electrolysis at Elevated Temperatures
- 2011New Construction and Catalyst Support Materials for Water Electrolysis at Elevated Temperatures
Places of action
Organizations | Location | People |
---|
article
CsH2PO4 as Electrolyte for the Formation of CH4 by Electrochemical Reduction of CO2
Abstract
It has been shown that methane can be formed in high amounts by co-electrolysis of CO<sub>2</sub> and H<sub>2</sub>O using a nickel cathode, a CsH<sub>2</sub>PO<sub>4</sub>–SiC composite electrolyte and an IrO<sub>2</sub> anode. The experimental conditions were 300 °C and 8 bar. The maximum efficiency close to 100% for methane was obtained at a current density of 10–15 mA cm<sup>−2</sup>. A small amount of hydrogen was formed as the only other product.