People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Postma, Almar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Exploiting NIR light mediated Surface-Initiated PhotoRAFT polymerization for orthogonal control polymer brushes and facile post-modification of complex architecture through opaque barrierscitations
- 2020Polymerized Ionic Liquid Block Copolymer Electrolytes for All-Solid-State Lithium-Metal Batteriescitations
- 2020Lipid Nanodiscs via Ordered Copolymerscitations
- 2018Optimisation of grafting of low fouling polymers from three-dimensional scaffoldscitations
- 2016Tannic Acid and Cholesterol-Dopamine as Building Blocks in Composite Coatings for Substrate-Mediated Drug Deliverycitations
- 2016Tannic Acid and Cholesterol-Dopamine as Building Blocks in Composite Coatings for Substrate-Mediated Drug Deliverycitations
- 2013Thermally cross-linkable copolymer and its evaluation as a hole transport layer in organic light-emitting diode devicescitations
- 2011Poly(vinyl alcohol) physical hydrogels: Noncryogenic stabilization allows nano- and microscale materials designcitations
- 2009Cholesterol-mediated anchoring of enzyme-loaded liposomes within disulfide-stabilized polymer carrier capsulescitations
Places of action
Organizations | Location | People |
---|
article
Polymerized Ionic Liquid Block Copolymer Electrolytes for All-Solid-State Lithium-Metal Batteries
Abstract
In this work, we present a polymerized ionic liquid block copolymer (PBCP) film where relevant properties such as ionic conductivity and electrochemical parameters are tailored by using a ternary system comprised of poly(styrene-b-1-((2-acryloyloxy)ethyl)−3-butylimidazolium bis(tri-fluoromethanesulfonyl)imide), LiFSI salt and ethylene carbonate (EC) as a cosolvent. It was found that EC efficiently decreases the glass transition temperature of the ionic block, resulting in an improved ionic conductivity and efficient platting/stripping of lithium. By using an optimal ratio of EC/LiFSI at relatively high LiFSI amount, LimidLi symmetrical cells at 50 °C show an overpotential as low as 70 mV at 0.1 mA.cm−2 along with a high lithium transport number of 0.56 (tLi+ ). All-solid-state full cells based on lithium iron phosphate cathode paired with a lithium metal anode reveal a rather stable cycling at both 50 °C and 70 °C. A negligible capacity fading is observed up to 30 cycles where a specific capacity as high as 161 mAh.g−1 is achieved with a coulombic efficiency of 99.9%. Thus, this work demonstrates an important pathway for tailoring the properties of solid state polymer electrolytes for emerging and specially designed block copolymer architectures comprising domains that give both excellent ionic conduction along with desirable mechanical properties.