People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tillack, Bernd
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023High Crystallinity Ge Growth on Si (111) and Si (110) by Using Reduced Pressure Chemical Vapor Depositioncitations
- 2023Lateral Selective SiGe Growth for Local Dislocation-Free SiGe-on-Insulator Virtual Substrate Fabrication
- 2022Lateral Selective SiGe Growth for Dislocation-Free Virtual Substrate Fabricationcitations
- 2017Fully coherent Ge islands growth on Si nano-pillars by selective epitaxycitations
Places of action
Organizations | Location | People |
---|
document
Lateral Selective SiGe Growth for Dislocation-Free Virtual Substrate Fabrication
Abstract
<jats:p>Dislocation free local SiGe-on-insulator virtual substrate is fabricated using lateral selective SiGe growth by reduced pressure chemical vapor deposition. The lateral selective SiGe growth is performed around ~1.25 µm square Si (001) pillar in a cavity formed by HCl vapor phase etching of Si at 850 °C from side of SiO<jats:sub>2</jats:sub> / Si mesa structure on buried oxide. Smooth root mean square roughness of SiGe surface of 0.14 nm, which is determined by interface roughness between the sacrificially etched Si and the SiO<jats:sub>2</jats:sub> cap, is obtained. Uniform Ge content of ~40% in the laterally grown SiGe is observed. In the Si pillar, tensile strain of ~0.65% is found which could be due to thermal expansion difference between SiO<jats:sub>2</jats:sub> and Si. In the SiGe, tensile strain of ~1.4% along <010> direction, which is higher compared to that along <110> direction, is observed. The tensile strain is induced from both [110] and [-110] directions. Threading dislocations in the SiGe are located only ~400 nm from Si pillar and stacking faults are running towards <110> directions, resulting in wide dislocation-free area formation in SiGe along <010> due to horizontal aspect ratio trapping.</jats:p>