People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spirito, Davide
Basque Center for Materials, Applications and Nanostructures
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Full Picture of Lattice Deformation in a Ge<sub>1 − x</sub>Sn<sub>x</sub> Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024Selective Growth of GaP Crystals on CMOS-Compatible Si Nanotip Wafers by Gas Source Molecular Beam Epitaxycitations
- 2024The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdiskscitations
- 2024Full Picture of Lattice Deformation in a Ge 1-x Sn x Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024Continuous-wave electrically pumped multi-quantum-well laser based on group-IV semiconductorscitations
- 2024Continuous-wave electrically pumped multi-quantum-well laser based on group-IV semiconductorscitations
- 2024The Lattice Strain Distribution in GexSn1-x Micro-Disks Investigated at the Sub 100-nm Scale
- 2023Terahertz subwavelength sensing with bio-functionalized germanium fano-resonators
- 2023The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge<sub>1−<i>x</i></sub>Sn<sub><i>x</i></sub> Microdiskscitations
- 2023Lateral Selective SiGe Growth for Local Dislocation-Free SiGe-on-Insulator Virtual Substrate Fabrication
- 2022Terahertz subwavelength sensing with bio-functionalized germanium fano-resonatorscitations
- 2022Magnetic properties of layered hybrid organic-Inorganic metal-halide perovskites: Transition metal, organic cation and perovskite phase pffectscitations
- 2022Lateral Selective SiGe Growth for Dislocation-Free Virtual Substrate Fabricationcitations
- 2022Raman spectroscopy in layered hybrid organic-inorganic metal halide perovskites
- 2022Magnetic Properties of Layered Hybrid Organic‐Inorganic Metal‐Halide Perovskites: Transition Metal, Organic Cation and Perovskite Phase Effectscitations
- 2022Monolithic and catalyst-free selective epitaxy of InP nanowires on Silicon
- 2022Tailoring photoluminescence by strain-engineering in layered perovskite flakescitations
- 2020CsPbX3/SiOx (X = Cl, Br, I) monoliths prepared via a novel sol-gel route starting from Cs4PbX6 nanocrystalscitations
- 2020Nanocrystals of Lead Chalcohalides:A Series of Kinetically Trapped Metastable Nanostructurescitations
- 2020Nano- and microscale apertures in metal films fabricated by colloidal lithography with perovskite nanocrystalscitations
- 2020Nanocrystals of Lead Chalcohalidescitations
- 2019Extending the Colloidal Transition Metal Dichalcogenide Library to ReS2 Nanosheets for Application in Gas Sensing and Electrocatalysiscitations
- 2019Keratin-Graphene Nanocomposite: Transformation of Waste Wool in Electronic Devicescitations
Places of action
Organizations | Location | People |
---|
document
Lateral Selective SiGe Growth for Dislocation-Free Virtual Substrate Fabrication
Abstract
<jats:p>Dislocation free local SiGe-on-insulator virtual substrate is fabricated using lateral selective SiGe growth by reduced pressure chemical vapor deposition. The lateral selective SiGe growth is performed around ~1.25 µm square Si (001) pillar in a cavity formed by HCl vapor phase etching of Si at 850 °C from side of SiO<jats:sub>2</jats:sub> / Si mesa structure on buried oxide. Smooth root mean square roughness of SiGe surface of 0.14 nm, which is determined by interface roughness between the sacrificially etched Si and the SiO<jats:sub>2</jats:sub> cap, is obtained. Uniform Ge content of ~40% in the laterally grown SiGe is observed. In the Si pillar, tensile strain of ~0.65% is found which could be due to thermal expansion difference between SiO<jats:sub>2</jats:sub> and Si. In the SiGe, tensile strain of ~1.4% along <010> direction, which is higher compared to that along <110> direction, is observed. The tensile strain is induced from both [110] and [-110] directions. Threading dislocations in the SiGe are located only ~400 nm from Si pillar and stacking faults are running towards <110> directions, resulting in wide dislocation-free area formation in SiGe along <010> due to horizontal aspect ratio trapping.</jats:p>