Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Quevedo-Lopez, M. A.

  • Google
  • 2
  • 10
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2012Synthesis and Characterization of Pb(ZrᵼE.ᵽ3ᵽ1, TiᵼE.ᵽ2ᵽ5)Oᵽ1-Pb(NbᵼF/ᵽ1, Znᵽ0/ᵽ1)Oᵽ1 Thin Film Cantilevers for Energy Harvesting Applications1citations
  • 2010Impact of Gate Dielectric in Carrier Mobility in Low Temperature Chalcogenide Thin Film Transistors for Flexible Electronics38citations

Places of action

Chart of shared publication
Fuentes-Fernandez, Erika
1 / 1 shared
Debray-Mechtaly, W.
1 / 2 shared
Gnade, B.
1 / 1 shared
Shah, P.
1 / 2 shared
Hovarth, J.
1 / 1 shared
Mejia, I.
1 / 1 shared
Salas-Villasenor, A. L.
1 / 1 shared
Gnade, B. E.
1 / 2 shared
Ramirez-Bon, R.
1 / 1 shared
Cha, D. K.
1 / 1 shared
Chart of publication period
2012
2010

Co-Authors (by relevance)

  • Fuentes-Fernandez, Erika
  • Debray-Mechtaly, W.
  • Gnade, B.
  • Shah, P.
  • Hovarth, J.
  • Mejia, I.
  • Salas-Villasenor, A. L.
  • Gnade, B. E.
  • Ramirez-Bon, R.
  • Cha, D. K.
OrganizationsLocationPeople

article

Impact of Gate Dielectric in Carrier Mobility in Low Temperature Chalcogenide Thin Film Transistors for Flexible Electronics

  • Hovarth, J.
  • Mejia, I.
  • Salas-Villasenor, A. L.
  • Gnade, B. E.
  • Ramirez-Bon, R.
  • Cha, D. K.
  • Quevedo-Lopez, M. A.
Abstract

Cadmium sulfide thin film transistors were demonstrated as the n-type device for use in flexible electronics. CdS thin films were deposited by chemical bath deposition (70° C) on either 100 nm HfO2 or SiO2 as the gate dielectrics. Common gate transistors with channel lengths of 40-100 μm were fabricated with source and drain aluminum top contacts defined using a shadow mask process. No thermal annealing was performed throughout the device process. X-ray diffraction results clearly show the hexagonal crystalline phase of CdS. The electrical performance of HfO 2 /CdS -based thin film transistors shows a field effect mobility and threshold voltage of 25 cm2 V-1 s-1 and 2 V, respectively. Improvement in carrier mobility is associated with better nucleation and growth of CdS films deposited on HfO2. © 2010 The Electrochemical Society.

Topics
  • Deposition
  • impedance spectroscopy
  • mobility
  • x-ray diffraction
  • thin film
  • crystalline phase
  • aluminium
  • annealing
  • Cadmium