People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hollenkamp, Anthony F.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
An azo-spiro mixed ionic liquid electrolyte for lithium metal- LiFePO 4 batteries
Abstract
Using a binary ionic liquid (IL) electrolyte composed of N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide and 2-oxo-3,9-dioxa-6-azonia-spiro[5.5]undecane bis(trifluoromethanesulfonyl)imide at an optimized ratio, we investigated battery cycling behavior at temperatures of 50 degrees C and above. We achieved an extended cycle life using the binary electrolyte system as the problem of cell short-circuiting (stemming from lithium dendrite growth) was significantly reduced. We provide evidence that 2-oxo-3,9-dioxa-6-azonia-spiro[5.5]undecane bis(trifluoromethanesulfonyl)imide assists in short-circuit prevention through the suppression of lithium dendrites. For batteries employing a lithium metal anode and a LiFePO4 cathode, we report capacities in excess of 120 mAh g(-1), and by utilizing a pulse charging technique we were able to charge a cell at a current density (0.1 mA cm(-2)), which we were not able to achieve using a normal charging regime. We also present lithium cycling data for 2-oxo-3,9-dioxa-6-azonia-spiro[5.5]undecane bis(trifluoromethanesulfonyl)imide in the absence of another IL. We show that poor capacity and a necessarily high operating temperature make this system undesirable although we observed no short-circuiting. We conclude that the structure of the components of the IL and the nature of the charging regime employed can cause a significant reduction in dendrite-induced short-circuiting. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3429138] All rights reserved.