People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Siemers, Carsten
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Titanium alloys with a high β stabilizer content – sample preparation strategies and micrographs
- 2023Nanostructured Ti-13Nb-13Zr alloy for implant application—material scientific, technological, and biological aspectscitations
- 2023Nanostructured Ti-13Nb-13Zr alloy for implant application - material scientific, technological, and biological aspectscitations
- 2023Laser powder bed fusion (LPBF) of commercially pure titanium and alloy development for the LPBF processcitations
- 2022Two novel titanium alloys for medical applications: Thermo-mechanical treatment, mechanical properties, and fracture analysiscitations
- 2022Deformation and Microstructure of Titanium Chips and Workpiececitations
- 2020Second-generation Titanium alloys Ti-15Mo and Ti-13Nb-13Zr: A Comparison of the Mechanical Properties for Implant Applicationscitations
- 2020Second-generation Titanium alloys Ti-15Mo and Ti-13Nb-13Zr: A Comparison of the Mechanical Properties for Implant Applicationscitations
- 2020Recent Developments in the Production, Application and Research of Titanium in Germany
- 2020Aluminum- and Vanadium-free Titanium Alloys for Medical Applicationscitations
- 2015Shear Melting and High Temperature Embrittlement: Theory and Application to Machining Titaniumcitations
- 2013Influence of Iron on the Size and Distribution of Metallic Lanthanum Particles in Free-Machining Titanium Alloys Ti 6Al 7Nb xFe 0.9Lacitations
- 2013Analysis of a free machining alpha + beta titanium alloy using conventional and ultrasonically assisted turningcitations
- 2011Tool Wear Mechanisms during Machining of Alloy 625citations
- 2010Influence of La-Content and Microstructure on the Corrosion Properties of a New Free Machining Titanium Alloycitations
Places of action
Organizations | Location | People |
---|
document
Influence of La-Content and Microstructure on the Corrosion Properties of a New Free Machining Titanium Alloy
Abstract
<jats:p>A new titanium alloy was developed at the Technische Universität Braunschweig by alloying the standard Ti6Al4V with lanthanum. Lanthanum contents between 0.9% and 2.8% lead to improved machinability by reducing the chip length up to a factor of 100. The microstructure of the alloys depends on the sample treatment. Cast alloys have a martensitic structure whereas compressed and annealed ones show a Widmannstätten structure.The corrosion properties of these new alloys were investigated by electrochemical methods and standard corrosion tests. Investigations with potentiodynamic polarization showed that lanthanum containing alloys exhibited an active passive transition near the Eoc in chloride solutions, which is attributed to the dissolution of lanthanum. All alloys showed a similar behavior in artificial saliva and sulfuric acid. Electrochemical impedance spectroscopy (EIS) measurements confirmed the results of the other methods.</jats:p>