People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pederson, Larry R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2015Concept Feasibility Report for Electroplating Zirconium onto Uranium Foil - Year 2
- 2010Degradation Mechanisms of SOFC Anodes in Coal Gas Containing Phosphoruscitations
- 2010Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic componentscitations
- 2010SOFC Ohmic Resistance Reduction by HCl-Induced Removal of Manganese at the Anode/Electrolyte Interfacecitations
- 2007Electrode Performance in Reversible Solid Oxide Fuel Cellscitations
- 2006Electrical, Thermoelectric, and Structural Properties of La(MxFe1-x)O3 (M=Mn, Ni, Cu)citations
- 2004ELECTRODE DEVELOPMENT FOR REVERSIBLE SOLID OXIDE FUEL CELLS
Places of action
Organizations | Location | People |
---|
article
SOFC Ohmic Resistance Reduction by HCl-Induced Removal of Manganese at the Anode/Electrolyte Interface
Abstract
The ohmic resistance of anode-supported solid oxide fuel cells having a manganese-based cathode was lowered when operated in synthetic coal gas containing hydrogen chloride. This effect was not observed for cells with cathodes that did not contain manganese. Substantial amounts of Mn were found throughout the grain boundaries of the 8 mole% yttria-stabilized zirconia (8YSZ) electrolyte. Exposure to HCl partially removed Mn near the anode/electrolyte interface, presumably by volatilization as MnCl2(g). This work suggests that one of the underlying causes of higher than expected electrolyte resistance in anode-supported SOFCs is a lowering of the ionic conductivity of 8YSZ by incorporation of manganese.