People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ramousse, Severine
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2016Processing and characterization of multilayers for energy device fabrication (invited)
- 2014Densification and grain growth kinetics of Ce 0.9 Gd 0.1 O 1.95 in tape cast layers: The influence of porositycitations
- 2014Thermo-mechanical properties of SOFC components investigated by a combined method
- 2014Densification and grain growth kinetics of Ce0.9Gd0.1O1.95 in tape cast layers: The influence of porositycitations
- 2013Shape distortion and thermo-mechanical properties of dense SOFC components from green tape to sintered body
- 2013Sintering process optimization for multi-layer CGO membranes by in situ techniquescitations
- 2013Camber Evolution and Stress Development of Porous Ceramic Bilayers During Co-Firingcitations
- 2013Camber Evolution and Stress Development of Porous Ceramic Bilayers During Co-Firingcitations
- 2013The effect of forming stresses on the sintering of ultra-fine Ce0.9Gd0.1O2-δ powderscitations
- 2012Shape distortion and thermo-mechanical properties of SOFC components from green tape to sintering body
- 2012Shape distortion and thermo-mechanical properties of SOFC components from green tape to sintering body
- 2012Analysis of the sintering stresses and shape distortion produced in co-firing of CGO-LSM/CGO bi-layer porous structures
- 2012Analysis of the sintering stresses and shape distortion produced in co-firing of CGO-LSM/CGO bi-layer porous structures
- 2012Characterization of impregnated GDC nano structures and their functionality in LSM based cathodescitations
- 2011Manufacturing and characterization of metal-supported solid oxide fuel cellscitations
- 2011Manufacturing and characterization of metal-supported solid oxide fuel cellscitations
- 2011Planar metal-supported SOFC with novel cermet anodecitations
- 2011Planar metal-supported SOFC with novel cermet anodecitations
- 2009Status of Development and Manufacture of Solid Oxide Fuel Cell at Topsoe Fuel Cell A/S and Risø/DTUcitations
- 2009Status of Development and Manufacture of Solid Oxide Fuel Cell at Topsoe Fuel Cell A/S and Risø/DTUcitations
- 2009Development of Planar Metal Supported SOFC with Novel Cermet Anodecitations
- 2009Development of Planar Metal Supported SOFC with Novel Cermet Anodecitations
- 2006Break down of losses in thin electrolyte SOFCscitations
- 2005Nanostructured lanthanum manganate composite cathodecitations
Places of action
Organizations | Location | People |
---|
article
Status of Development and Manufacture of Solid Oxide Fuel Cell at Topsoe Fuel Cell A/S and Risø/DTU
Abstract
Fuel Cell (TOFC) provides the SOFC technology platform: Cells, stacks, and integrated stack module for different applications and collaborates with integrator partners to develop, test and demonstrate SOFC applications. The technology development is based on a R&D consortium with Risø National Laboratory (Risø/DTU) which includes material synthesis and cost effective ceramic manufacturing methods for anode and metal supported flat planar cells in addition to multilayer assembling for compact stacks with metallic interconnects. The development is focussing on high electrochemical performance and durability as well as maximal robustness. In 2008 TOFC has constructed a 5 MW/year cell and stack production facility in Denmark featuring all the necessary unit operations from ceramic powder, continuous tape casting, screen printing, spray painting and sintering to complete stack modules. TOFC's engagement in SOFC technology includes system development in collaboration with system partners and development and manufacturing of integrated stack assemblies called PowerCore.©2009 COPYRIGHT ECS - The Electrochemical Society