Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ayre, G. N.

  • Google
  • 3
  • 10
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2011Metal catalyst-free growth of carbon nanotubes and their application in field effect transitorscitations
  • 2010Chemical Vapour Deposition of CNTs Using Structural Nanoparticle Catalystscitations
  • 2009Growth of single-walled carbon nanotubes using germanium nanocrystals formed by implantation17citations

Places of action

Chart of shared publication
De Groot, Cornelis
3 / 41 shared
Hutchison, J. L.
2 / 5 shared
Uchino, T.
1 / 8 shared
Smith, D. C.
3 / 7 shared
Ashburn, P.
1 / 13 shared
Uchino, Takashi
2 / 5 shared
Hutchinson, J. L.
1 / 1 shared
Hector, A. L.
1 / 1 shared
Mazumder, M.
1 / 1 shared
Ashburn, Peter
2 / 3 shared
Chart of publication period
2011
2010
2009

Co-Authors (by relevance)

  • De Groot, Cornelis
  • Hutchison, J. L.
  • Uchino, T.
  • Smith, D. C.
  • Ashburn, P.
  • Uchino, Takashi
  • Hutchinson, J. L.
  • Hector, A. L.
  • Mazumder, M.
  • Ashburn, Peter
OrganizationsLocationPeople

article

Growth of single-walled carbon nanotubes using germanium nanocrystals formed by implantation

  • Uchino, Takashi
  • Ayre, G. N.
  • De Groot, Cornelis
  • Hutchison, J. L.
  • Smith, D. C.
  • Ashburn, Peter
Abstract

This paper presents a complementary metal oxide semiconductor compatible method for the chemical vapor deposition of singlewalled carbon nanotubes. The method uses Ge implantation into a SiO2 layer to create Ge nanocrystals, which are then used to produce SWNTs. The results of atomic force microscopy and scanning electron microscopy analyses indicate that Ge implantation provides good control of particle size and delivers a well-controlled SWNT growth process. The SWNT area density of 4.1 +- 1.2 um in length/um2 obtained from the Ge nanocrystals is comparable to that obtained from metal-catalyst-based methods used to fabricate SWNT field-effect transistors. A carbon implantation after Ge nanocrystal formation significantly enhances the process operating window for the growth of the SWNTs and increases the area density.

Topics
  • density
  • impedance spectroscopy
  • Carbon
  • scanning electron microscopy
  • nanotube
  • atomic force microscopy
  • semiconductor
  • chemical vapor deposition
  • Germanium