People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Inman, D.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2016Investigating microstructural evolution during the electroreduction of UO2 to U in LiCl-KCl eutectic using focused ion beam tomography
- 2008Production of Ti-W alloys from mixed oxide precursors via the FFC cambridge processcitations
- 2008The production of Ti-Mo alloys from mixed oxide precursors via the FFC cambridge processcitations
- 2006Direct electrochemical production of Ti-10W alloys from mixed oxide preform precursorscitations
- 2005Predominance diagrams for electrochemical reduction of titanium oxides in molten CaCl2citations
Places of action
Organizations | Location | People |
---|
article
Production of Ti-W alloys from mixed oxide precursors via the FFC cambridge process
Abstract
Ti–10wt%Ti–10wt%W alloys were produced via the electrochemical deoxidation of mixed TiO2+WO3TiO2+WO3 sintered precursors in a molten CaCl2CaCl2 electrolyte at 1173K1173K . Fully metallic samples were retrieved after 15h15h of reduction. This reduction time was longer than that observed for metallization of (Ti,Mo)O2(Ti,Mo)O2 sintered precursors. This was believed to occur as a result of significant differences in the reduction pathway, despite tungsten and molybdenum possessing similar interactions with titanium. It was found that the reduction initiated with the rapid reduction of WO3WO3 to a fine W–Ti particulate. TiO2TiO2 then proceeded to reduce sequentially through the lower oxides, with concurrent formation of Ca(Ti,W)O3Ca(Ti,W)O3 . Between 1 and 3h3h of reduction the sample is believed to be composed of Ca(Ti,W)O3Ca(Ti,W)O3 and TiO. A comproportionation reaction between these two phases is then observed, resulting in the formation of W–Ti and CaTi2O4CaTi2O4 . However homogenization between the product titanium and W–Ti does not take place until the titanium is sufficiently deoxidized; thus, β-Tiβ-Ti forms late in the reduction process. It is believed that the late formation of β-Tiβ-Ti in the reduction process, coupled with the lack of a conductive metal oxide network, accounts for the relatively slow reduction time.