People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dye, David
Engineering and Physical Sciences Research Council
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Unravelling dynamic recrystallisation in a microalloyed steel during rapid high temperature deformation using synchrotron X-rayscitations
- 2024A novel multi-scale microstructure to address the strength/ductility trade off in high strength steel for fusion reactors
- 2024Development of novel carbon-free cobalt-free iron-based hardfacing alloys with a hard π-ferrosilicide phase
- 2024Development of novel carbon-free cobalt-free iron-based hardfacing alloys with a hard π-ferrosilicide phase
- 2022Precipitate dissolution during deformation induced twin thickening in a CoNi-base superalloy subject to creepcitations
- 2020The Interaction of Galling and Oxidation in 316L Stainless Steelcitations
- 2020The Interaction of Galling and Oxidation in 316L Stainless Steelcitations
- 2020Element segregation and α2 formation in primary α of a near-α Ti-alloy
- 2019Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materialscitations
- 2019A nickel based superalloy reinforced by both Ni3Al and Ni3V ordered-fcc precipitatescitations
- 2019Development of Ni-free Mn-stabilised maraging steels using Fe 2 SiTi precipitatescitations
- 2018Data on a new beta titanium alloy system reinforced with superlattice intermetallic precipitates.
- 2017A high strength Ti–SiC metal matrix compositecitations
- 2016Multi-scale modelling of high-temperature deformation mechanisms in Co-Al-W-based superalloys.
- 2016Altering the Microstructure of Pearlitic Steel Using Pulsed Electric Currentcitations
- 2016The dislocation mechanism of stress corrosion embrittlement in Ti-6Al-2Sn-4Zr-6Mocitations
- 2016Effect of precipitation on mechanical properties in the β-Ti alloy Ti-24Nb-4Zr-8Sncitations
- 2015Nanoprecipitation in a beta-titanium alloycitations
- 2014Alloying and the micromechanics of Co-Al-W-X quaternary alloyscitations
- 2010Development of microstructure and properties during the multiple extrusion and consolidation of Al-4Mg-1Zrcitations
- 2008Production of NiTi via the FFC Cambridge Processcitations
- 2006Microsegregation quantification for model validation
Places of action
Organizations | Location | People |
---|
article
Production of NiTi via the FFC Cambridge Process
Abstract
The FFC Cambridge process is a direct electrodeoxidation process used to reduce metal oxides to their constituent metals in a molten Ca Cl2 salt bath. NiTi O3 was used as a precursor (the first stable oxide to form upon blending and sintering NiO and Ti O2 powders) and was successfully reduced using the FFC Cambridge process at 1173 K and a constant cell voltage of -3.1 V to produce a NiTi alloy. This work builds on the literature work [Chinese Science Bulletin, 51, 2535 (2006)] through: (i) a predominance diagram calculated to show the regions of phase stability throughout the usable potential window of the Ca Cl2 salt; (ii) the investigation of a wide range of reduction times for a fixed cell voltage, elucidating several additional stable phases, to yield a complete and detailed reduction pathway. The reduction pathway for NiTi O3 was identified through the analysis of a series of partial reductions, with fully reduced NiTi formed after a period of 24 h. The first stage of the reaction involved the rapid formation of Ni and CaTi O3. The reduction then proceeded via the formation of the intermediate compounds Ni3 Ti and Ni2 Ti4O. All the NiTi O3 and Ni were consumed after a period of 6 h, while the intermediate compounds remained until the reaction was near completion. The experimental results related well to the thermodynamic predictions of the predominance diagram. A small variation in stoichiometry of the produced NiTi observed from the edge to the core of the samples was attributed to redeposition of Ti on the sample surface from the salt and a slightly Ti-rich NiTi O3 precursor material.