People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Buchheit, Rudolph
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2009Electrochemical Evaluation of Constituent Intermetallics in Aluminum Alloy 2024-T3 Exposed to Aqueous Vanadate Inhibitorscitations
- 2008Investigation and Discussion of Characteristics for Intermetallic Phases Common to Aluminum Alloys as a Function of Solution pHcitations
- 2006Dissolution Behavior of Al2CuMg (S Phase) in Chloride and Chromate Conversion Coating Solutionscitations
- 2005The Effect of Cu Content on Chromate Conversion Coating Formation of Compositional Analogs of the η Phase Mg(Zn,xCu)_2citations
Places of action
Organizations | Location | People |
---|
article
Investigation and Discussion of Characteristics for Intermetallic Phases Common to Aluminum Alloys as a Function of Solution pH
Abstract
This paper presents results for corrosion potentials, pitting potentials, and electrochemical characteristics for intermetallic particles commonly present in high strength aluminum-based alloys, for tests conducted in a 0.1 M NaCl solution of varying pH via the use of a microcapillary electrochemical cell. The intermetallics investigated were Mg_2Si, MgZn_2, Al_7Cu_2Fe, Al_2Cu, Al_2CuMg, and Al_3Fe. Elaboration of the results reveals that the electrochemical behavior of such compounds varies markedly with pH, with attendant ramifications for localized corrosion and protection in Al alloys. Examples of this are shown for AA7075-T651, where it is shown that the localized corrosion morphology is drastically different upon the bulk alloy depending on the pH of the test environment. A stochastic pitting is observed at an acid pH, near-neutral conditions result in a deterministic-type pitting, and a general corrosion is observed at an alkaline pH.