People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marina, Olga A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Strontium Free Cu-Doped La2NiO4 Oxides as Promising Oxygen Electrodes for Solid Oxide Electrolysis Cellscitations
- 2023Investigating electrochemical corrosion at Mg alloy-steel joint interface using scanning electrochemical cell impedance microscopy (SECCIM)citations
- 2023Ni-YSZ Electrode Stability in Solid Oxide Electrolysis Cells Operated in 90-98% Steam
- 2023Understanding La<sub>2</sub>NiO<sub>4</sub>-La<sub>0.5</sub>Ce<sub>0.5</sub>O<sub>2</sub> Oxygen Electrode Phase Evolution in a Solid Oxide Electrolysis Cell
- 2010Advanced Ceramic Interconnect Material for Solid Oxide Fuel Cells: Electrical and Thermal Properties of Calcium- and Nickel-Doped Yttrium Chromitescitations
- 2010Degradation Mechanisms of SOFC Anodes in Coal Gas Containing Phosphoruscitations
- 2010Calcium- and Cobalt-doped Yttrium Chromites as an Interconnect Material for Solid Oxide Fuel Cellscitations
- 2010Improvement of Sintering, Thermal Behavior, and Electrical Properties of Calcium- and Transition Metal-Doped Yttrium Chromitecitations
- 2010Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic componentscitations
- 2010SOFC Ohmic Resistance Reduction by HCl-Induced Removal of Manganese at the Anode/Electrolyte Interfacecitations
- 2007Electrode Performance in Reversible Solid Oxide Fuel Cellscitations
- 2004ELECTRODE DEVELOPMENT FOR REVERSIBLE SOLID OXIDE FUEL CELLS
Places of action
Organizations | Location | People |
---|
article
Electrode Performance in Reversible Solid Oxide Fuel Cells
Abstract
The performance of several negative (fuel) and positive (air) electrode compositions for use in reversible solid oxide fuel cells (SOFC) that are capable of operating both as a fuel cell and as an electrolyzer was investigated in half-cell and full-cell tests.Negative electrode compositions studied were a nickel/zirconia cermet (Ni/YSZ) and lanthanum-substituted strontium titanate/ceria composite, whereas positive electrode compositions examined included mixed ion and electron-conducting lanthanum strontium ferrite (LSF), lanthanum strontium copper ferrite (LSCuF), lanthanum strontium cobalt ferrite (LSCoF), and lanthanum strontium manganite (LSM).While titanate/ceria and Ni/YSZ electrodes performed similarly in the fuel cell mode in half-cell tests, losses associated with electrolysis were lower for the titanate/ceria electrode.Positive electrodes all gave higher losses in the electrolysis mode when compared to the fuel cell mode.This behavior was most apparent for mixed-conducting LSF, LSCuF, and LSCoF electrodes, and discernible but smaller for LSM; observations are consistent with expected trends in the interfacial oxygen vacancy concentration under anodic and cathodic polarization. Full-cell tests conducted for cells with a thin electrolyte (7 um YSZ) similarly showed higher polarization losses in the electrolysis than fuel cell direction.