Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Oblonsky, Lucy J.

  • Google
  • 1
  • 3
  • 244

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2000Structure of the passive film that forms on iron in aqueous environments244citations

Places of action

Chart of shared publication
Davenport, Alison J.
1 / 37 shared
Toney, Michael F.
1 / 30 shared
Ryan, Mary P.
1 / 2 shared
Chart of publication period
2000

Co-Authors (by relevance)

  • Davenport, Alison J.
  • Toney, Michael F.
  • Ryan, Mary P.
OrganizationsLocationPeople

article

Structure of the passive film that forms on iron in aqueous environments

  • Davenport, Alison J.
  • Toney, Michael F.
  • Ryan, Mary P.
  • Oblonsky, Lucy J.
Abstract

<p>In situ surface X-ray diffraction was used to identify the detailed structure of the passive film that forms on (001)- and (110)-oriented iron single crystals in a borate buffer solution at +0.4 V vs. mercurous sulfate reference electrode, a high passive potential. The passive film is a new phase: a spinel with a fully occupied oxygen lattice, octahedral site occupancy of 80 ± 10%, tetrahedral site occupancy of 66 ± 10%, and an octahedral interstitial site occupancy of 12 ± 4%. The passive film forms with an epitaxial relationship to the substrate iron; for growth on Fe(001), film(001)∥Fe(001) and film[(11̄0]∥Fe[100], while for growth on Fe(110), film(111)∥Fe(110) and film[11̄0]∥Fe[100]. The in-plane lattice parameter for the passive film (the LAMM phase) 8.39 ± 0.01 angstrom for growth on both faces, and the out-of-plane lattice parameter is 8.25 ± 0.1 angstrom [Fe(001)] and 8.42 ± 0.1 angstrom [Fe(110)]. The passive film forms a nanocrystalline microstructure with numerous defects. Specifically, the grain size is 50-80 angstrom in-plane and about 30 angstrom out-of-plane. There is a small mosaic spread of 2.5 to 4.1° and a high density of antiphase boundaries and stacking faults. The structure of the film determined in situ was found to be identical to that found for an emersed sample, indicating that the high potential film studied here is stable on removal from the electrolyte. Some of the implications of the film structure on passivity are discussed.</p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • single crystal
  • grain
  • grain size
  • phase
  • x-ray diffraction
  • Oxygen
  • iron
  • interstitial
  • stacking fault
  • nanocrystalline microstructure