People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Elwenspoek, Michael Curt
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2009Characterization of MEMS-on-tube assembly: reflow bonding of borosilicate glass (Duran ®) tubes to silicon substratescitations
- 2008Fabrication of a silicon oxide stamp by edge lithography reinforced with silicon nitride for nanoimprint lithographycitations
- 2008Monolithics silicon nano-ridge fabrication by edge lithography and wet anisotropic etching of silicon
- 2005Growth and surface characterization of piezoelectric AlN thin films on silicon (100) and (110) substratescitations
- 2005Multifunctional tool for expanding afm-based applicationscitations
- 2003A low hydraulic capacitance pressure sensor for integration with a micro viscosity detectorcitations
- 2003Wet anisotropic etching for fluidic 1d nanochannelscitations
- 2002Wet anisotropic etching for fluidic 1D nanochannels
- 2002Fabrication and characterization of MEMS based wafer-scale palladium-silver alloy membranes for hydrogen separation and hydrogenation/dehydrogenation reactionscitations
- 2001Local anodic bonding of Kovar to Pyrex aimed at high-pressure, solvent-resistant microfluidic connectionscitations
- 2001Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips with integrated conductivity sensorscitations
- 2001Failure mechanisms of pressurized microchannels, model, and experimentscitations
- 2001Selective Wafer Bonding by Surface Roughness Controlcitations
- 2000Wet and dry etching techniques for the release of sub-micrometre perforated membranescitations
- 2000High resolution powder blast micromachiningcitations
- 2000Mask materials for powder blastingcitations
- 2000Failure mechanisms of pressurized microchannels, model and experiments
Places of action
Organizations | Location | People |
---|
article
Selective Wafer Bonding by Surface Roughness Control
Abstract
Selective wafer bonding is presented as a technique for fabrication of microelectromechanical systems (MEMS) devices with movable, contacting elements, e.g., micromachined valves. The selectivity of the wafer bonding is obtained by tailoring the wafer surface microroughness. The adhesion parameter is used as the design rule for the wafer bonding technique. The technique is demonstrated with bulk micromachined check valves and a pressure actuated normally closed valve, but can be used for fabricating MEMS devices using surface micromachining processes as well. For these valves the selective fusion bonding technique turned out to be a convenient way to bond different wafer layers and a promising fabrication step with a high, reliable product yield.