People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hauch, Anne
Haldor Topsoe (Denmark)
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023(Invited) A Sustainable Future Fueled By Science: Recent Advances in Power-to-X Activities at Topsoe
- 2021Ni migration in solid oxide cell electrodes:Review and revised hypothesiscitations
- 2021Ni migration in solid oxide cell electrodes: Review and revised hypothesiscitations
- 2021Ni migration in solid oxide cell electrodes: Review and revised hypothesiscitations
- 2020Review of Ni migration in SOC electrodes
- 2020Review of Ni migration in SOC electrodes
- 2019Comprehensive Hypotheses for Degradation Mechanisms in Ni-Stabilized Zirconia Electrodescitations
- 2019Comprehensive Hypotheses for Degradation Mechanisms in Ni-Stabilized Zirconia Electrodescitations
- 2018Diffusion rates of reactants and components in solid oxide cells
- 2016New Hypothesis for SOFC Ceramic Oxygen Electrode Mechanismscitations
- 2012Durable and Robust Solid Oxide Fuel Cells
- 2010Ni/YSZ electrode degradation studied by impedance spectroscopy: Effects of gas cleaning and current densitycitations
- 2008Solid Oxide Electrolysis Cells: Microstructure and Degradation of the Ni/Yttria-Stabilized Zirconia Electrodecitations
- 2008Solid Oxide Electrolysis Cells
- 2008Nanoscale chemical analysis and imaging of solid oxide cellscitations
Places of action
Organizations | Location | People |
---|
article
Comprehensive Hypotheses for Degradation Mechanisms in Ni-Stabilized Zirconia Electrodes
Abstract
Degradation of nickel-stabilized zirconia (Ni-SZ) electrodes is predominantly due to four features 1) high mobility of Ni, 2) fragile nature of SZ ceramics, 3) narrow three phase boundary (3PB), and 4) effects of impurities: i) in blocking (poisoning of 3PB), and ii) on mobility of Ni. Impurities may be contaminants in reactant gases and influenced by the reactants H2O, CO2 and CO, or impurities in cell and stack materials. Examples of important degradation types and hypotheses of the degradation mechanisms are described. Examples are: a) loss of electrochemical contact between Ni and YSZ (yttria stabilized zirconia) particles and loss of contact between Ni-Ni particles followed by Ni-migration away from the YSZ electrolyte - one reason is hypothesized being a result of huge potential and thermal gradients at the 3PB; b) growth of Ni-particles; c) redoxing; d) blocking of 3PB and reaction sites by impurities like Si and S. Mitigation methods are discussed.