People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hagen, Anke
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2024Fabrication framework for metal supported solid oxide cells via tape castingcitations
- 2024Fabrication framework for metal supported solid oxide cells via tape castingcitations
- 2024Reversible Operation of Metal Supported Solid Oxide Cellscitations
- 2023Performance and sulfur tolerance of a short stack with solid oxide cells using infiltrated strontium titanate based anodescitations
- 2023Low Temperature Performance and Durability of Solid Oxide Fuel Cells with Titanate Based Fuel Electrodes Using Reformate Fuelcitations
- 2022Metal Supported Electrolysis Cellscitations
- 2021Performance of Metal Supported SOFCs Operated in HydrocarbonFuels and at Low (>650 ˚C) Temperaturescitations
- 2020Co-electrolysis of steam and carbon dioxide in large area solid oxide cells based on infiltrated mesoporous oxygen electrodescitations
- 2020Metal Supported SOFCs for Mobile Applications using Hydrocarbon Fuelscitations
- 2019Developing Accelerated Stress Test Protocols for Solid Oxide Fuel Cells and Electrolysers: The European Project AD ASTRAcitations
- 2019Internal reforming on Metal supported SOFCscitations
- 2017Investigation of a Spinel-forming Cu-Mn Foam as an Oxygen Electrode Contact Material in a Solid Oxide Cell Single Repeating Unitcitations
- 2017Progress of SOFC/SOEC Development at DTU Energy: From Materials to Systemscitations
- 2016Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodescitations
- 2015Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodescitations
- 2013Defect chemistry, thermomechanical and transport properties of (RE2−xSrx)0.98(Fe0.8Co0.2)1−yMgyO4−δ (RE = La, Pr)citations
- 2013Defect chemistry, thermomechanical and transport properties of (RE 2 - x Sr x ) 0.98 (Fe 0.8 Co 0.2 ) 1 - y Mg y O 4 - δ (RE = La, Pr)citations
- 2012Durable and Robust Solid Oxide Fuel Cells
- 2012Test and Approval Center for Fuel Cell and Hydrogen Technologies: Phase I. Initiation
- 2010Defect Chemistry and Thermomechanical Properties of Ce0.8PrxTb0.2-xO2-deltacitations
- 2009Chromium poisoning of LSM/YSZ and LSCF/CGO composite cathodescitations
- 2009Status of Development and Manufacture of Solid Oxide Fuel Cell at Topsoe Fuel Cell A/S and Risø/DTUcitations
- 2009Status of Development and Manufacture of Solid Oxide Fuel Cell at Topsoe Fuel Cell A/S and Risø/DTUcitations
- 2008Assessment of the cathode contribution to the degradation of anode-supported solid oxide fuel cellscitations
- 2008Defect and electrical transport properties of Nb-doped SrTiO 3citations
- 2008Defect and electrical transport properties of Nb-doped SrTiO3citations
- 2008Defect and electrical transport properties of Nb-doped SrTiO3citations
- 2007Electrochemical Impedance Studies of SOFC Cathodescitations
- 2007Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Risø National Laboratorycitations
- 2006Break down of losses in thin electrolyte SOFCscitations
Places of action
Organizations | Location | People |
---|
article
Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodes
Abstract
Two metal supported solid oxide fuel cells (active area 16 cm<sup>2</sup>) with nanostructured Ni:GDC infiltrated anodes, but different anode and support microstructures were studied in respect to sulfur tolerance at the aimed operating temperature of 650ºC. The studied MS-SOFCs are based on ferretic stainless steel (FeCr) and showed excellent performance characteristics at 650ºC with area specific resistances (ASR) of 0.35 Ωcm<sup>2</sup> and 0.7 Ωcm<sup>2</sup> respectively. The sulfur tolerance testing was performed by addition/removal of 2, 5, and 10 ppm H2S in hydrogen based fuel under galvanostatic operation at a current load of 0.25Acm<sup>-2</sup>. The results were compared with literature on the sulfur tolerance of the conventional SOFC Ni/YSZ cermet anode. The comparison in terms of absolute cell resistance increase and relative anode polarization resistance increase indicate, that the nanostructured Ni:GDC MS-SOFC based anode is significantly more sulfur tolerant than the conventional Ni/YSZ cermet anode.© 2015 ECS - The Electrochemical Society