People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Boxall, Colin
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2022Corrosion Behaviour of AGR Simulated Fuels (SIMFUELs)
- 2019The behaviour of spent nuclear fuel in wet interim storage
- 2019Towards the decontamination of plutonium contaminated bricks
- 2018Mechanisms of fixed contamination of commonly engineered surfaces
- 2017Real time nanogravimetric monitoring of corrosion in radioactive environments
- 2017AGR Cladding Corrosioncitations
- 2016The effect of acetohydroxamic acid on stainless steel corrosion in nitric acidcitations
- 2016Real-Time Nanogravimetric Monitoring of Corrosion in Radioactive Decontamination Systemscitations
- 2016Corrosion of AGR Fuel Pin Steel Under Conditions Relevant to Permanent Disposalcitations
- 2015Corrosion behaviour of AGR SIMFUELScitations
- 2015The effect of SO3-Ph-BTBP on stainless steel corrosion in nitric acidcitations
- 2015Real time nanogravimetric monitoring of corrosion for nuclear decommissioningcitations
- 2013The metallisation of insulating substrates with nano-structured metal films of controllable pore dimensioncitations
- 2013The development of nanoporous metal membranes for analytical separartions
- 2013Nitric acid reduction on 316L stainless steel under conditions representative of reprocessingcitations
- 2013Corrosion behaviour of AGR simulated fuelscitations
- 2013The nanoporous metallisation of polymer membranes through photocatalytically initiated electroless depositioncitations
- 2012Method for formation of porous metal coatings
- 2012Surface Decontamination by Photocatalysis
- 2012The nanoporous metallisation of insulating substrates through Photocatalytically Initiated Electroless Deposition (PIED)
- 2012Semiconductor photocatalysis and metal deposition
- 2012Fixed Contamination on Steel Surfaces: First Use of Quartz Crystal Microgravimetry to Measure Oxide Growth on Process Steels Under Conditions Typical of Nuclear Reprocessingcitations
- 2010Surface decontamination by photocatalysis
- 2009Synthesis of alpha- and beta-FeOOH iron oxide nanoparticles in non-ionic surfactant mediumcitations
- 2006Mesoporous and Nanoparticulate Metal Oxides: Applications in New Photocatalysis
- 2005The applications of photocatalytic waste minimisation in nuclear fuel processingcitations
Places of action
Organizations | Location | People |
---|
article
Nitric acid reduction on 316L stainless steel under conditions representative of reprocessing
Abstract
Steels comprise the largest class of metal-based materials encountered on nuclear sites. An understanding of how process steels interact with HNO3 in spent fuel treatment plant environments is required to enable informed decisions to be made about the design and effective application of different steel types within nuclear environments. Stainless steels readily passivate in nitric acid. However, increasing the oxidising power of the media can lead to passive film dissolution, resulting in rapid transpassive corrosion. The corrosion of steels in nitric acid is further complicated by the autocatalytic reduction of HNO3 to aqueous HNO2 which attacks the steel surface. This paper describes the effect of this behaviour on process steels in stagnant and/or flowing conditions using electrochemical and microgravimetric based methods. We describe linear sweep voltammetry studies performed on a 316L stainless steel rotating disk electrodes in varying concentrations of nitric acid and rotation speeds and provide a qualitative interpretation of the results and what these imply about the mechanism of HNO3 reduction. These findings will be used in follow on studies to determine the kinetic parameters of the nitric acid reduction reaction at the surface of 316L stainless steel.