People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gollas, Bernhard
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytes:A hierarchical model based on experiments and ab initio simulationscitations
- 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytescitations
- 2022Dissolution and electrolysis of lunar regolith in ionic liquidscitations
- 2018The impact of operating conditions on component and electrode development for zinc-air flow batteriescitations
- 2018Mesostructure and physical properties of aqueous mixtures of the ionic liquid 1-ethyl-3-methyl imidazolium octyl sulfate doped with divalent sulfate salts in the liquid and the mesomorphic statescitations
- 2017Tin, bismuth, and tin–bismuth alloy electrodeposition from chlorometalate salts in deep eutectic solventscitations
- 2014Separation of 1,3-substituted imidazoles for quality control of a Lewis acidic ionic liquid for aluminum electroplatingcitations
- 2013Mechanistic Studies of Zinc Electrodeposition from Deep Eutectic Electrolytescitations
- 2011Preparation of CoNi high surface area porous foams by substrate controlled electrodepositioncitations
- 2010Zinc electrodeposition from a deep eutectic system containing choline chloride and ethylene glycolcitations
Places of action
Organizations | Location | People |
---|
article
Mechanistic Studies of Zinc Electrodeposition from Deep Eutectic Electrolytes
Abstract
Deep eutectic electrolytes have been suggested as alternatives to classical room temperature ionic liquids and been used for the electrodeposition of metals. We have investigated the electrodeposition of zinc from a Lewis-basic choline chloride/ethylene glycol deep eutectic solvent containing ZnCl2. Raman spectroscopy confirmed the presence of the [ZnCl4]2− ion in the electrolyte that was examined by cyclic voltammetry at static and rotating glassy carbon disk electrodes. The formation of a dissolved, intermediate reducible zinc species Z during the cathodic sweep is proposed to account for the unusual zinc electrodeposition behavior observed in the deep eutectic electrolyte in agreement with the effect of rotation rate, cathodic switching potential and potential sweep rate on the deposition current in RDE voltammetry. The zinc electrodeposition behavior with sodium ethoxide added to the deep eutectic solvent supports the suggestion that Z is a complex of Zn 2+ and deprotonated components of the solvent. The absence of a current plateau in RDE experiments with ethoxide containing electrolyte is thought to be the result of a potential dependent blocking of the reduction of Z by a layer adsorbed on the electrode.