People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Petrushina, Irina
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2020CsH 2 PO 4 as Electrolyte for the Formation of CH 4 by Electrochemical Reduction of CO 2citations
- 2020CsH2PO4 as Electrolyte for the Formation of CH4 by Electrochemical Reduction of CO2citations
- 2018Metal alloys for the new generation of compressors at hydrogen stations: Parametric study of corrosion behaviorcitations
- 2014The Chemical Vapour Deposition of Tantalum - in long narrow channels
- 2014Intermediate Temperature Steam Electrolysis with Phosphate-Based Electrolytes
- 2014Development of Non-Platinum Catalysts for Intermediate Temperature Water Electrolysis
- 2013Development and Study of Tantalum and Niobium Carbides as Electrocatalyst Supports for the Oxygen Electrode for PEM Water Electrolysis at Elevated Temperaturescitations
- 2012Nickel and its alloys as perspective materials for intermediate temperature steam electrolysers operating on proton conducting solid acids as electrolyte
- 2012WC as a non-platinum hydrogen evolution electrocatalyst for high temperature PEM water electrolyserscitations
- 2012Development of Refractory Ceramics for The Oxygen Evolution Reaction (OER) Electrocatalyst Support for Water Electrolysis at elevated temperaturescitations
- 2011Corrosion behaviour of construction materials for high temperature steam electrolyserscitations
- 2011Corrosion behaviour of construction materials for high temperature steam electrolyserscitations
- 2011New Construction and Catalyst Support Materials for Water Electrolysis at Elevated Temperatures
- 2010Strategic surface topographies for enhanced lubrication in sheet forming of stainless steelcitations
- 2007Corrosion monitoring in a straw-fired power plant using an electrochemical noise probecitations
- 2005Electrochemical noise measurements of steel corrosion in the molten NaCl-K2SO4 systemcitations
- 2004Development of strategic surface topographies for lubrication in sheet forming of stainless steel
- 2000On the chemical nature of boundary lubrication of stainless steel by chlorine - and sulfur-containing EP-additivescitations
Places of action
Organizations | Location | People |
---|
article
Nickel and its alloys as perspective materials for intermediate temperature steam electrolysers operating on proton conducting solid acids as electrolyte
Abstract
Several stainless steels, nickel-based alloys, Ta-coated stainless steel, niobium, nickel, platinum and gold were evaluated as possible materials for use in the intermediate temperature water electrolysers. The corrosion resistance was measured in molten KH2PO4 as simulated conditions corresponding to protonconducting solid acids or transition metal phosphates as electrolytes. It was shown that Au is subject to corrosion in molten KH 2PO4 during polarisation. However, Ni and Ta-coated stainless steel (AISI 316L) demonstrated high corrosion stability and can be recommended as a construction material for bipolar plates and cell housing. It was shown, that nickel, high-nickel alloys and austenitic stainless steels containing small amounts of Ti have high corrosion resistance in this media. © The Electrochemical Society.