People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jensen, Jens Oluf
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2022Activity of carbon-encapsulated Ni 12− x Fe x P 5 catalysts for the oxygen evolution reaction:Combination of high activity and stabilitycitations
- 2022Activity of carbon-encapsulated Ni12−xFexP5 catalysts for the oxygen evolution reactioncitations
- 2020Polysulfone-polyvinylpyrrolidone blend membranes as electrolytes in alkaline water electrolysiscitations
- 2020(Invited) Advanced Alkaline Electrolysis Cells for the Production of Sustainable Fuels and Chemicals
- 2020Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progresscitations
- 2020Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progresscitations
- 2020Process for producing metal alloy nanoparticles
- 2018Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameterscitations
- 2016Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytescitations
- 2016Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytescitations
- 2016Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrationscitations
- 2016Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrationscitations
- 2015Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranescitations
- 2014Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acidcitations
- 2014Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acidcitations
- 2014Invited: A Stability Study of Alkali Doped PBI Membranes for Alkaline Electrolyzer Cells
- 2014Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cellscitations
- 2014High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures
- 2014High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures
- 2013Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranescitations
- 2012Nickel and its alloys as perspective materials for intermediate temperature steam electrolysers operating on proton conducting solid acids as electrolyte
- 2011New Construction and Catalyst Support Materials for Water Electrolysis at Elevated Temperatures
- 2011Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cellscitations
- 2009Thermal coupling of a high temperature PEM fuel cell with a complex hydride tankcitations
- 2004An in-situ neutron diffraction study of the ageing of CaNi5Dx at 80ºC and 9 bar.
Places of action
Organizations | Location | People |
---|
article
Nickel and its alloys as perspective materials for intermediate temperature steam electrolysers operating on proton conducting solid acids as electrolyte
Abstract
Several stainless steels, nickel-based alloys, Ta-coated stainless steel, niobium, nickel, platinum and gold were evaluated as possible materials for use in the intermediate temperature water electrolysers. The corrosion resistance was measured in molten KH2PO4 as simulated conditions corresponding to protonconducting solid acids or transition metal phosphates as electrolytes. It was shown that Au is subject to corrosion in molten KH 2PO4 during polarisation. However, Ni and Ta-coated stainless steel (AISI 316L) demonstrated high corrosion stability and can be recommended as a construction material for bipolar plates and cell housing. It was shown, that nickel, high-nickel alloys and austenitic stainless steels containing small amounts of Ti have high corrosion resistance in this media. © The Electrochemical Society.