Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nibouche, Omar

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Machine learning on spectral data from miniature devices for food quality analysis - a case studycitations

Places of action

Chart of shared publication
Liu, Jun
1 / 25 shared
Uhomoibhi, James
1 / 1 shared
Wang, Hui
1 / 23 shared
Asharindavida, Fayas
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Liu, Jun
  • Uhomoibhi, James
  • Wang, Hui
  • Asharindavida, Fayas
OrganizationsLocationPeople

document

Machine learning on spectral data from miniature devices for food quality analysis - a case study

  • Liu, Jun
  • Uhomoibhi, James
  • Wang, Hui
  • Nibouche, Omar
  • Asharindavida, Fayas
Abstract

Food quality analysis can be carried out by spectral data acquired from spectrometers with its advantage of non-destructive way of testing. Portable and miniature spectroscopy can be a suitable solution when it meets the specifications such as portability, cost, and short processing time requirements, to enable ordinary citizens to use such a device in the fight against food fraud. Compared to more expensive, bulky, and non-portable devices, the data collected using miniature and portable spectrometers is of a lower quality and thus adversely affect the quality of the analysis. Research have been carried out to use machine learning (ML) classifiers on spectral data analysis for food quality assessment. The present work focuses on two aspects: firstly, preliminary exploratory statistical analysis is conducted on the real spectral data on different food products including oils, fruits and spices acquired from such miniature devices, which aims to evaluate and illustrate the distinctive characteristics of such spectral data, data distribution and difference in the spectra across multiple data acquisitions etc. along with a summary of the key challenges to face and explore. Secondly, a case study for the differentiation ofextra virgin olive from adulterated with vegetable oil is provided to analyze and evaluate how some commonly used ML classifiers can be used for classification, while the impact of different preprocessing methods to improve the accuracy and efficiency is also provided. The case study demonstrates the good potential of using data analytics for spectral data from miniature device, although the overall performance of those ML classifiers is not exceptional (the classification rates of up to 83.32%) which is partially due to the quality of data, and partially due to limiting to only some classifiers. More elaborate data pre-processing and cleaning methods can be used to address the key challenges of the spectral data from miniature device, and other types of classifiers can be also explored further in future work.

Topics
  • impedance spectroscopy
  • machine learning