Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fisher, Kathleen

  • Google
  • 1
  • 3
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Synthesizing bijective lenses34citations

Places of action

Chart of shared publication
Pierce, Benjamin C.
1 / 4 shared
Walker, David
1 / 17 shared
Zdancewic, Steve
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Pierce, Benjamin C.
  • Walker, David
  • Zdancewic, Steve
OrganizationsLocationPeople

article

Synthesizing bijective lenses

  • Pierce, Benjamin C.
  • Walker, David
  • Fisher, Kathleen
  • Zdancewic, Steve
Abstract

<jats:p>Bidirectional transformations between different data representations occur frequently in modern software systems. They appear as serializers and deserializers, as parsers and pretty printers, as database views and view updaters, and as a multitude of different kinds of ad hoc data converters. Manually building bidirectional transformations---by writing two separate functions that are intended to be inverses---is tedious and error prone. A better approach is to use a domain-specific language in which both directions can be written as a single expression. However, these domain-specific languages can be difficult to program in, requiring programmers to manage fiddly details while working in a complex type system.</jats:p><jats:p>We present an alternative approach. Instead of coding transformations manually, we synthesize them from declarative format descriptions and examples. Specifically, we present Optician, a tool for type-directed synthesis of bijective string transformers. The inputs to Optician are a pair of ordinary regular expressions representing two data formats and a few concrete examples for disambiguation. The output is a well-typed program in Boomerang (a bidirectional language based on the theory of lenses). The main technical challenge involves navigating the vast program search space efficiently. In particular, and unlike most prior work on type-directed synthesis, our system operates in the context of a language with a rich equivalence relation on types (the theory of regular expressions). Consequently, program synthesis requires search in two dimensions: First, our synthesis algorithm must find a pair of "syntactically compatible types," and second, using the structure of those types, it must find a type- and example-compliant term. Our key insight is that it is possible to reduce the size of this search space without losing any computational power by defining a new language of lenses designed specifically for synthesis. The new language is free from arbitrary function composition and operates only over types and terms in a new disjunctive normal form. We prove (1) our new language is just as powerful as a more natural, compositional, and declarative language and (2) our synthesis algorithm is sound and complete with respect to the new language. We also demonstrate empirically that our new language changes the synthesis problem from one that admits intractable solutions to one that admits highly efficient solutions, able to synthesize intricate lenses between complex file formats in seconds. We evaluate Optician on a benchmark suite of 39 examples that includes both microbenchmarks and realistic examples derived from other data management systems including Flash Fill, a tool for synthesizing string transformations in spreadsheets, and Augeas, a tool for bidirectional processing of Linux system configuration files.</jats:p>

Topics
  • impedance spectroscopy
  • theory