People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kawashima, Nobuaki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Fabrication of ZnO Thin-Film Transistors by Chemical Vapor Deposition Method using Zinc Acetate Solution
Abstract
Zinc oxide (ZnO) thin-film transistors (TFTs) were fabricated by thermal chemical vapor deposition (CVD) using aqueous solutions of zinc acetate (ZnAc2) dihydrate as a source. The precursor was supplied to the substrate by the nitrogen bubbling method through a plate with numerous orifices in the ZnAc2 solution. The ZnO thin films were grown on silicon substrates in the growth temperature (TG) range from 280 to 700 °C. The growth rate of ZnO thin films were linearly proportional to the growth temperature, which suggested that the growth rate is limited by the decomposition of ZnAc2. Depletion-mode TFTs with the ZnO film grown at TG = 350 °C was found to exhibit a relatively low saturation mobility (µsat). However, µsat increased from 1 to 14 cm2V-1s-1 and the operational mode was changed from the depletion mode to the enhancement mode by annealing treatment at 200 °C for 2 h under N2 ambient.