Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mohan, John Rex

  • Google
  • 1
  • 8
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Pulsed Hot Dense Oxygen Plasma Irradiation of Platinum for Improved Spin Hall Effect3citations

Places of action

Chart of shared publication
Shashank, Utkarsh
1 / 3 shared
Vas, Joseph Vimal
1 / 8 shared
Mishra, Mayank
1 / 1 shared
Kumar, Sachin
1 / 4 shared
Manna, Sourabh
1 / 1 shared
Asada, Hironori
1 / 3 shared
Rawat, Rajdeep Singh
1 / 3 shared
Gupta, Surbhi
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Shashank, Utkarsh
  • Vas, Joseph Vimal
  • Mishra, Mayank
  • Kumar, Sachin
  • Manna, Sourabh
  • Asada, Hironori
  • Rawat, Rajdeep Singh
  • Gupta, Surbhi
OrganizationsLocationPeople

article

Pulsed Hot Dense Oxygen Plasma Irradiation of Platinum for Improved Spin Hall Effect

  • Shashank, Utkarsh
  • Vas, Joseph Vimal
  • Mishra, Mayank
  • Mohan, John Rex
  • Kumar, Sachin
  • Manna, Sourabh
  • Asada, Hironori
  • Rawat, Rajdeep Singh
  • Gupta, Surbhi
Abstract

<jats:p> The impurity incorporation in host high spin-orbit coupling materials like platinum (Pt) has shown improved charge-to-spin conversion efficiency by modifying the up-spin and down-spin electrons trajectories via bending or skewing them in opposite directions. This enables efficient generation, manipulation, and transport of spin currents. In this study, we irradiated the Pt thin films with pulsed hot dense oxygen plasma in non-focus mode operation and analyzed the spin Hall angle of the oxygen plasma irradiated Pt films using spin torque ferromagnetic resonance (ST-FMR). Our results demonstrate a 2.4 times enhancement in the spin Hall angle after transient oxygen plasma treatment of Pt as compared to pristine Pt. This improvement might be because of the introduction of disorder and defects in the Pt lattice due to transient oxygen plasma processing, which enhanced the spin-orbit coupling and leads to more efficient charge-to-spin conversion without breaking the spin-orbit torque symmetries. Our findings offer a new method of dense plasma focus device-based modification of material for the development of advanced spintronic devices based on Pt and other heavy metals. </jats:p>

Topics
  • thin film
  • Oxygen
  • Platinum
  • defect