Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Houari, Mohammed

  • Google
  • 3
  • 14
  • 37

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Hubbard's parameter influence on Ba2GdReO6 properties, a promising ferromagnetic double Pérovskite oxide for thermoelectric applications8citations
  • 2022A new semiconducting full Heusler Li<sub>2</sub>BeX (X = Si, Ge and Sn): first-principles phonon and Boltzmann calculations15citations
  • 2021Electronic Structure and Thermoelectric Properties of Semiconductors K2GeSiX6 (X=F, Cl, Br and I) Compounds: Ab-Initio Investigation14citations

Places of action

Chart of shared publication
Idriss, Y. Bouchentouf
1 / 1 shared
Bouadjemi, B.
1 / 2 shared
Matougui, M.
1 / 1 shared
Lantri, T.
1 / 1 shared
Haid, S.
1 / 1 shared
Bentata, S.
1 / 1 shared
Blaha, Lamia
1 / 1 shared
Bouadi, Abed
1 / 2 shared
Ameri, Ibrahim
1 / 1 shared
Lantri, Tayeb
1 / 1 shared
Mesbah, Smain
1 / 1 shared
Ameri, Mohammed
1 / 2 shared
Al-Douri, Y.
1 / 5 shared
El-Rehim, A. F. Abd
1 / 1 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Idriss, Y. Bouchentouf
  • Bouadjemi, B.
  • Matougui, M.
  • Lantri, T.
  • Haid, S.
  • Bentata, S.
  • Blaha, Lamia
  • Bouadi, Abed
  • Ameri, Ibrahim
  • Lantri, Tayeb
  • Mesbah, Smain
  • Ameri, Mohammed
  • Al-Douri, Y.
  • El-Rehim, A. F. Abd
OrganizationsLocationPeople

article

Electronic Structure and Thermoelectric Properties of Semiconductors K2GeSiX6 (X=F, Cl, Br and I) Compounds: Ab-Initio Investigation

  • Houari, Mohammed
Abstract

<jats:p> In this work, we have studied the structural, optoelectronic, elastic and thermoelectric properties for halides doubles perovskites compounds K<jats:sub>2</jats:sub>GeSiX<jats:sub>6</jats:sub> ([Formula: see text], Cl, Br and I). Based on the linearized augmented plane wave method with full potential (FP-LAPW) method, the previous properties are treated within GGA-PBE and the modified Beck–Johnson correction (mBJ-GGA) approximations. The results show that these compounds are stable in the nonmagnetic phase (NM). Due to the electronic properties, our results indicate that all these compounds have a semiconductor behavior with a direct bandgap at [Formula: see text]-[Formula: see text] direction with values of 2.30[Formula: see text]eV, 0.632[Formula: see text]eV, 0.259[Formula: see text]eV and 0.124[Formula: see text]eV for K<jats:sub>2</jats:sub>GeSiF<jats:sub>6</jats:sub>, K<jats:sub>2</jats:sub>GeSiCl<jats:sub>6</jats:sub>, K<jats:sub>2</jats:sub>GeSiBr<jats:sub>6</jats:sub> and K<jats:sub>2</jats:sub>GeSiI<jats:sub>6</jats:sub>, respectively. In addition, the high dielectric constant, high absorption coefficient and high optical conductivity suggest that the materials have the potential for a wide absorption range that starts from the visible to the ultraviolet of optoelectronic applications, including solar or photovoltaic cells. Finally, the thermoelectric properties, through the calculation of the various related parameters (Seebeck coefficient, electrical conductivity, thermal conductivity, power factor and figure of merit), show that the materials K<jats:sub>2</jats:sub>GeSiBr<jats:sub>6</jats:sub> and K<jats:sub>2</jats:sub>GeSiI<jats:sub>6</jats:sub> can be promising for predispositions thermoelectric and by comparing the thermoelectric parameters of the two materials mentioned above, at room temperature, the material K<jats:sub>2</jats:sub>GeSiI<jats:sub>6</jats:sub> has better performance than the material K<jats:sub>2</jats:sub>GeSiBr<jats:sub>6</jats:sub>, due to a significantly higher Seebeck coefficient (234.32[Formula: see text][Formula: see text]V/<jats:sup>°</jats:sup>K), a fairly substantial power factor ([Formula: see text][Formula: see text]Wk[Formula: see text]m[Formula: see text]s[Formula: see text]) and a fairly low thermal conductivity ([Formula: see text][Formula: see text]WK[Formula: see text]m[Formula: see text]s[Formula: see text]). </jats:p>

Topics
  • perovskite
  • compound
  • phase
  • dielectric constant
  • semiconductor
  • thermal conductivity
  • electrical conductivity