Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Miyazaki, Tatsujiro

  • Google
  • 2
  • 4
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015A Review of Simple Methods for Arresting Crack Growth3citations
  • 2012IMPROVEMENT OF FATIGUE LIFE OF A HOLED SPECIMEN OF ALUMINUM-ALLOY 2024-T3 BY INDENTATION AND HOLE EXPANSION1citations

Places of action

Chart of shared publication
Makabe, Chobin
2 / 5 shared
Ferdous, Md. Shafiul
2 / 8 shared
Naka, Kaito
1 / 1 shared
Hattori, Nobusuke
1 / 1 shared
Chart of publication period
2015
2012

Co-Authors (by relevance)

  • Makabe, Chobin
  • Ferdous, Md. Shafiul
  • Naka, Kaito
  • Hattori, Nobusuke
OrganizationsLocationPeople

article

IMPROVEMENT OF FATIGUE LIFE OF A HOLED SPECIMEN OF ALUMINUM-ALLOY 2024-T3 BY INDENTATION AND HOLE EXPANSION

  • Makabe, Chobin
  • Ferdous, Md. Shafiul
  • Miyazaki, Tatsujiro
  • Hattori, Nobusuke
Abstract

<jats:p> A method of improving the fatigue life and crack growth behavior of a center holed specimen was investigated. Local plastic deformation was applied around the hole by indentation to achieve the purpose. A series of fatigue tests was conducted on aluminum-alloy 2024-T3. Push-pull tests were performed under a stress ratio of R= -1 and a frequency of 10Hz. The observations of the crack initiation and growth were performed with a microscope, and hardness around the hole was measured by Vickers hardness testing machine. In the present study, the longest fatigue life was observed in the case of an indentation specimen with the highest load. The indentation was performed on both sides of the hole edges. The crack growth rate was decreased by indentation or expansion of the material around the hole. From the experimental results, it is found that the fatigue life and crack growth behavior of a holed or notched specimen can be improved by a simple technical method that is related to the local plastic working. </jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • aluminium
  • crack
  • fatigue
  • hardness
  • hardness testing