Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Camargo, J.

  • Google
  • 1
  • 6
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Influence of the sintering temperature on ferroelectric properties of potassium-sodium niobate piezoelectric ceramics7citations

Places of action

Chart of shared publication
Ramajo, L.
1 / 1 shared
Rubio-Marcos, F.
1 / 1 shared
Rachia, M. F.
1 / 1 shared
Ramírez, M. A.
1 / 1 shared
Cortés, J. A.
1 / 1 shared
Castro, M.
1 / 13 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Ramajo, L.
  • Rubio-Marcos, F.
  • Rachia, M. F.
  • Ramírez, M. A.
  • Cortés, J. A.
  • Castro, M.
OrganizationsLocationPeople

article

Influence of the sintering temperature on ferroelectric properties of potassium-sodium niobate piezoelectric ceramics

  • Ramajo, L.
  • Rubio-Marcos, F.
  • Rachia, M. F.
  • Camargo, J.
  • Ramírez, M. A.
  • Cortés, J. A.
  • Castro, M.
Abstract

<jats:p> The effect of sintering condition on structure, microstructure, and ferroelectric properties of ([Formula: see text][Formula: see text][Formula: see text] ([Formula: see text][Formula: see text][Formula: see text]- O<jats:sub>3</jats:sub> (KNL–NTS) has been investigated. Ceramic powders have been synthesized by the solid-state reaction method and sintered at different temperatures (1115[Formula: see text]C, 1125[Formula: see text]C, and 1140[Formula: see text]C). Then, samples were characterized by thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and impedance spectroscopy. Through XRD results, the perovskite structure and small peaks corresponding to a secondary phase were detected. Ceramics processed at the highest temperatures showed higher densities and good piezoelectric properties ([Formula: see text], [Formula: see text], and [Formula: see text], particularly specimens sintered at 1125[Formula: see text]C presented the highest piezoelectric performance. </jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • microstructure
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • Sodium
  • Potassium
  • thermogravimetry
  • sintering