People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Singh, Jaspal
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Study of Mechanical Properties of Granular Blast Furnace Slag Concrete
- 2022Low Temperature Step Annealing Synthesis of the Ti2AlN MAX Phase to Fabricate MXene Quantum Dotscitations
- 2020Optimization and computational studies evaluating molecular dynamics of EDA cored polymeric dendrimer.citations
- 2020The modified magnetodielectric response in KNN-CZFMO based particulate multiferroic composite systemcitations
Places of action
Organizations | Location | People |
---|
article
The modified magnetodielectric response in KNN-CZFMO based particulate multiferroic composite system
Abstract
<jats:p> Lead-free multiferroic composites of 1[Formula: see text](K[Formula: see text]Na[Formula: see text]NbO[Formula: see text](Co[Formula: see text]Zn[Formula: see text](Fe[Formula: see text]Mn[Formula: see text]O<jats:sub>4</jats:sub> (KNN-CZFMO), where [Formula: see text]= 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1.0, have been investigated for their structural, morphological, electrical, magnetic, dielectric and magneto-dielectric properties. Presence of KNN and CZFMO crystal structure in each composite has been confirmed from X-ray diffraction analysis (XRD). Cuboidal-shaped grains of KNN and spherical-shaped grains of CZFMO have been observed by scanning electron microscopy (SEM). The room temperature ferroelectric behavior as confirmed by polarization versus electric field ([Formula: see text]–[Formula: see text] hysteresis loops has been found to be decreasing with increasing CZFMO concentration. Increasing magnetic ordering with the increase in CZFMO concentration in the prepared composites has been observed by magnetization versus magnetic field ([Formula: see text]–[Formula: see text] hysteresis loops. The electrical conductivity of composites has been studied using Jonscher’s universal power law. The room temperature dielectric constant ([Formula: see text] and dielectric loss (tan [Formula: see text] have been observed to decrease with the increase in the frequency of the applied external electric field. The dielectric relaxation behavior has been observed using curve fitting analysis via the Havriliak–Negami relaxation model. Maximum value of the magnetodielectric (MD) effect [Formula: see text]−11% at a frequency of 1 kHz with the applied magnetic field of 1 T has been achieved for 0.9 KNN−0.1 CZFMO ([Formula: see text]= 0.1) composite in the present research work. </jats:p>