People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Viola, Giuseppe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2025Investigation of electric field-induced phase transitions in unfilled tungsten bronze relaxor ceramics designed by the high entropy conceptcitations
- 2019Orthoenstatite to forsterite phase transformation in magnesium germanate ceramicscitations
- 2017The effect of processing conditions on phase and microstructure of CaGeO3 ceramicscitations
- 2013Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectricscitations
- 2013A Lead-Free and High-Energy Density Ceramic for Energy Storage Applicationscitations
- 2012The effect of carbon nanotubes on the sintering behaviour of zirconiacitations
- 2012Structural and magnetic characterization of spark plasma sintered Fe-50Co alloyscitations
- 2011THE CONTRIBUTION OF ELECTRICAL CONDUCTIVITY, DIELECTRIC PERMITTIVITY AND DOMAIN SWITCHING IN FERROELECTRIC HYSTERESIS LOOPScitations
Places of action
Organizations | Location | People |
---|
article
THE CONTRIBUTION OF ELECTRICAL CONDUCTIVITY, DIELECTRIC PERMITTIVITY AND DOMAIN SWITCHING IN FERROELECTRIC HYSTERESIS LOOPS
Abstract
<jats:p> Triangular voltage waveform was employed to distinguish the contributions of dielectric permittivity, electric conductivity and domain switching in current-electric field curves. At the same time, it is shown how those contributions can affect the shape of the electric displacement — electric field loops (D–E loops). The effects of frequency, temperature and microstructure (point defects, grain size and texture) on the ferroelectric properties of several ferroelectric compositions is reported, including: BaTiO <jats:sub>3</jats:sub>; lead zirconate titanate (PZT); lead-free Na <jats:sub>0.5</jats:sub> K <jats:sub>0.5</jats:sub> NbO <jats:sub>3</jats:sub>; perovskite-like layer structured A <jats:sub>2</jats:sub> B <jats:sub>2</jats:sub> O <jats:sub>7</jats:sub> with super high Curie point (T<jats:sub> c </jats:sub>); Aurivillius phase ferroelectric Bi <jats:sub>3.15</jats:sub> Nd <jats:sub>0.5</jats:sub> Ti <jats:sub>3</jats:sub> O <jats:sub>12</jats:sub>; and multiferroic Bi <jats:sub>0.89</jats:sub> La <jats:sub>0.05</jats:sub> Tb <jats:sub>0.06</jats:sub> FeO <jats:sub>3</jats:sub>. This systematic study provides an instructive outline in the measurement of ferroelectric properties and the analysis and interpretation of experimental data. </jats:p>