Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Turunen, M. J.

  • Google
  • 1
  • 9
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Long-term changes in mandibular bone microchemical quality after radiation therapy and underlying systemic malignancy: A pilot study2citations

Places of action

Chart of shared publication
Kullaa, A.
1 / 1 shared
Rieppo, L.
1 / 4 shared
Hyvärinen, M.
1 / 1 shared
Koistinen, Arto
1 / 4 shared
Dekker, H.
1 / 1 shared
Palander, A.
1 / 1 shared
Bruggenkate, C. M. Ten
1 / 1 shared
Schulten, E. A. J. M.
1 / 1 shared
Lyijynen, I.
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Kullaa, A.
  • Rieppo, L.
  • Hyvärinen, M.
  • Koistinen, Arto
  • Dekker, H.
  • Palander, A.
  • Bruggenkate, C. M. Ten
  • Schulten, E. A. J. M.
  • Lyijynen, I.
OrganizationsLocationPeople

article

Long-term changes in mandibular bone microchemical quality after radiation therapy and underlying systemic malignancy: A pilot study

  • Turunen, M. J.
  • Kullaa, A.
  • Rieppo, L.
  • Hyvärinen, M.
  • Koistinen, Arto
  • Dekker, H.
  • Palander, A.
  • Bruggenkate, C. M. Ten
  • Schulten, E. A. J. M.
  • Lyijynen, I.
Abstract

<jats:p> Radiation therapy (RT) is a treatment option for head and neck cancer (HNC), but 2% of RT patients may experience damage to the jawbone, resulting in osteoradionecrosis (ORN). The ORN can manifest years after RT exposure. Changes in the local microchemical bone quality prior to the clinical manifestation of ORN could play a key role in ORN pathogenesis. Chemical bone quality can be analyzed using Fourier transform infrared spectroscopy (FTIR), that is applied to examine the effects of cancer, chemotherapy, and RT on the quality of human mandibular bone. Cortical mandibular bone samples were harvested from dental implant beds of 23 individuals, i.e., patients with surgically and radiotherapeutically treated HNC (RT-HNC, [Formula: see text]), surgically and radiochemotherapeutically treated HNC (CH-RT-HNC, [Formula: see text]), only surgically treated HNC (SRG-HNC, [Formula: see text]), and healthy controls ([Formula: see text]). Infrared spectra were acquired from two representative regions of interest in cortical mandibular bone. Spectral parameters, i.e., mineral-to-matrix ratio (MM), carbonate-to-matrix ratio (CM), carbonate-to-phosphate ratio (CP), collagen maturity (cross-linking), crystallinity, acid phosphate substitution (APS), and advanced glycation end products (AGEs), were analyzed for each sample. Amide I region of the CH-RT-HNC group differed from the control group in cluster analysis ([Formula: see text]). Apart from a minor variation trend in collagen maturity ([Formula: see text]), there were no other significant differences between the groups. Thus, the effect of radiochemotherapy on mandibular bone composition should be further investigated. In future trials, this study design is potential when the effects of the cancer burden and different HNC treatment modalities on jawbone composition are studied, in order to reveal ORN pathogenesis. </jats:p>

Topics
  • impedance spectroscopy
  • mineral
  • cluster
  • Fourier transform infrared spectroscopy
  • crystallinity
  • appearance potential spectroscopy