Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aravind, Ramesh

  • Google
  • 1
  • 7
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Influence of Various Concentrations of Cetyltrimethylammonium Bromide on the Properties of Nickel Oxide Nanoparticles for Supercapacitor Application13citations

Places of action

Chart of shared publication
Sindhu, V.
1 / 2 shared
Chandar, N. Krishna
1 / 2 shared
Suresh, S.
1 / 13 shared
Kalaiselvi, C.
1 / 1 shared
Revathi, B.
1 / 1 shared
Pitchaimuthu, Sudhagar
1 / 38 shared
Grace, A. Nirmala
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Sindhu, V.
  • Chandar, N. Krishna
  • Suresh, S.
  • Kalaiselvi, C.
  • Revathi, B.
  • Pitchaimuthu, Sudhagar
  • Grace, A. Nirmala
OrganizationsLocationPeople

article

Influence of Various Concentrations of Cetyltrimethylammonium Bromide on the Properties of Nickel Oxide Nanoparticles for Supercapacitor Application

  • Sindhu, V.
  • Chandar, N. Krishna
  • Suresh, S.
  • Aravind, Ramesh
  • Kalaiselvi, C.
  • Revathi, B.
  • Pitchaimuthu, Sudhagar
  • Grace, A. Nirmala
Abstract

<jats:p> In this paper, the impact of the crystallite sizes of nickel oxide nanoparticles (NiO NPs) on their efficiency for electrochemical capacitors (EC) has been investigated. NiO NPs were prepared without and with low and high concentrations (0.02[Formula: see text]M and 0.1[Formula: see text]M) of cetyltrimethylammonium bromide (CTAB) using the hydrothermal process that represent NiO, NiO-1, NiO-2, respectively. The crystallite size of NiO, NiO-1, NiO-2 NPs was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis. The thermogravimetry/differential thermal analysis (TG/DTA) was used to investigate the thermal observation of as-prepared precursor to transform as NiO NPs. HRTEM revealed spherical seed-like morphologies, which consist of aggregated NiO-1 NPs with an average particle size of 9[Formula: see text]nm. The NiO-1 shows the large specific capacitance value of 168[Formula: see text]Fg[Formula: see text] at a current density of 0.5[Formula: see text]Ag[Formula: see text] compared with other NiO and NiO-2 NPs. The study suggests that the low concentration of surfactant CTAB of NiO NPs plays an important role in supercapacitor applications because of the smaller crystallite sizes of the materials as well as a large number of active sites for faradic reaction. </jats:p>

Topics
  • nanoparticle
  • density
  • nickel
  • scanning electron microscopy
  • x-ray diffraction
  • transmission electron microscopy
  • thermogravimetry
  • current density
  • differential thermal analysis
  • surfactant