People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thelander, Kimberly Dick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2015Electrical and Surface Properties of InAs/InSb Nanowires Cleaned by Atomic Hydrogencitations
- 2012High crystal quality wurtzite-zinc blende heterostructures in metal-organic vapor phase epitaxy-grown GaAs nanowirescitations
- 2011Crystal structure control in Au-free self-seeded InSb wire growth.citations
- 2008Control of GaP and GaAs Nanowire Morphology through Particle and Substrate Chemical Modification.citations
- 2007Directed growth of branched nanowire structures
- 2007Targeted deposition of Au aerosol nanoparticles on vertical nanowires for the creation of nanotreescitations
- 2006Crystal structure of branched epitaxial III-V nanotreescitations
- 2005A new understanding of au-assisted growth of III-V semiconductor nanowirescitations
- 2005Role of the Au/III-V interaction in the Au-assisted growth of III-V branched nanostructurescitations
- 2004Growth of GaP nanotree structures by sequential seeding of 1D nanowirescitations
Places of action
Organizations | Location | People |
---|
article
Crystal structure of branched epitaxial III-V nanotrees
Abstract
In this review we discuss the morphology and crystal structure of branched epitaxial III-V semiconductor structures, so called nanotrees, based on our own work with GaP, InAs and GaP/InP. These structures are formed by epitaxial growth in a step-wise procedure where each level can be individually controlled in terms of diameter, length and composition. Poly-typism is commonly observed for III-Vs with zinc blende, wurtzite or combinations thereof as the resulting crystal structure. Here we review GaP as an example of zinc blende and InAs of wurtzite type of growth in terms of nanotrees with two to three levels of growth. Included are also previously unpublished results on the growth of GaP/InP nanotrees to demonstrate effects of heteroepitaxial growth with substantial mismatch. For these structures a topotaxial growth behavior was observed with InP wires crawling along or spiraling around the GaP nanowires acting as a free-standing substrates.