Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Parameswaran, P.

  • Google
  • 3
  • 7
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023ELECTROCHEMICAL POLARIZATION STUDIES ON SPARK PLASMA SINTERED SS316-B<sub>4</sub>C COMPOSITEcitations
  • 2019Evaluation of Electrical Discharge Machining Performance on Al (6351)–SiC–B4C Compositecitations
  • 2014Electrical Discharge Machining of Al (6351)-5% SiC-10% B<sub>4</sub>C Hybrid Composite: A Grey Relational Approach39citations

Places of action

Chart of shared publication
Uthayakumar, M.
3 / 10 shared
Kumaran, S. Thirumalai
2 / 4 shared
Baranidharan, K.
1 / 1 shared
Suresh Kumar, S.
1 / 1 shared
Thirumalai Kumaran, S.
1 / 3 shared
Kumar, S. Suresh
1 / 9 shared
Mohandas, E.
1 / 3 shared
Chart of publication period
2023
2019
2014

Co-Authors (by relevance)

  • Uthayakumar, M.
  • Kumaran, S. Thirumalai
  • Baranidharan, K.
  • Suresh Kumar, S.
  • Thirumalai Kumaran, S.
  • Kumar, S. Suresh
  • Mohandas, E.
OrganizationsLocationPeople

article

ELECTROCHEMICAL POLARIZATION STUDIES ON SPARK PLASMA SINTERED SS316-B<sub>4</sub>C COMPOSITE

  • Uthayakumar, M.
  • Parameswaran, P.
  • Kumaran, S. Thirumalai
  • Baranidharan, K.
Abstract

<jats:p> The corrosion behavior of 316 stainless steel with 10[Formula: see text]wt.% B<jats:sub>4</jats:sub>C composites has been investigated using electrochemical measurements and electron backscattered diffraction (EBSD) and scanning electron microscopy (SEM) analyzes are performed. Spark plasma sintering (SPS) is used to achieve various heat treatments, which are performed at the temperatures of 800<jats:sup>∘</jats:sup>C, 900<jats:sup>∘</jats:sup>C, and 1000<jats:sup>∘</jats:sup>C. It significantly affects the materials’ ability to resist corrosion. The increase in grain size improves corrosion resistance, except at 900<jats:sup>∘</jats:sup>C when recrystallization is imperfect. However, grain homogeneity should be taken into consideration. The corrosion behavior of the composites is assessed using Tafel plots. The corrosion rate of the sample at 900<jats:sup>∘</jats:sup>C (0.2945[Formula: see text]mm/yr) is significantly lower than the rates of the samples at 800<jats:sup>∘</jats:sup>C and 1000<jats:sup>∘</jats:sup>C, respectively, as per the corrosion process of composites of 3.5[Formula: see text]wt.% NaCl solution. The B<jats:sub>4</jats:sub>C contents have a significant impact on the particle size reduction, low-density average crystallite size, mechanical, hardness, corrosion resistance, and thermal stability of composite powder. It is primarily utilized in nuclear applications as a neutron radiation absorbent. The research has revealed that the sample at 900<jats:sup>∘</jats:sup>C has fewer grain boundaries and the finest passivation film quality and superior corrosion resistance are found in intermediate grain size. </jats:p>

Topics
  • density
  • impedance spectroscopy
  • grain
  • stainless steel
  • corrosion
  • grain size
  • scanning electron microscopy
  • composite
  • hardness
  • electron backscatter diffraction
  • recrystallization
  • sintering