Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kumar, Amaresh

  • Google
  • 1
  • 1
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023ELECTROCHEMICAL ARC DRILLING OF NICKEL–TITANIUM SHAPE MEMORY ALLOY USING MOLYBDENUM ELECTRODE: INVESTIGATION, MODELING AND OPTIMIZATIONcitations

Places of action

Chart of shared publication
Kumar, Nitish
1 / 5 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kumar, Nitish
OrganizationsLocationPeople

article

ELECTROCHEMICAL ARC DRILLING OF NICKEL–TITANIUM SHAPE MEMORY ALLOY USING MOLYBDENUM ELECTRODE: INVESTIGATION, MODELING AND OPTIMIZATION

  • Kumar, Nitish
  • Kumar, Amaresh
Abstract

<jats:p> In the present scenario, electrochemical arc machining (ECAM) (hybrid of electric discharge erosion and electrochemical dissolution) is an evolving procedure for difficulty in machining the materials due to constraints of existing processes. This research aims to investigate the machinability of Ni[Formula: see text]Ti alloy through electrochemical arc drilling using molybdenum electrode. Electrolyte concentration (ethanol with ethylene glycol and sodium chloride), supply voltage, and tool rotation are considered as the variable factors to evaluate the ECAM performance characteristics in drilling blind hole operation concerning overcut (OC), tool wear rate (TWR) and materials removal rate (MRR). Consequently, response surface methodology is implemented for predictive modeling of various performance characteristics. Finally, multi-objective optimization through desirability function approach (DFA) has produced a set of optimal parameters to improve the productivity along with the accuracy, which is the prime requirement for the industrial applicability of the ECAM process. Results demonstrated that supply voltage is the influential key factor for improvement of machining rate. Scanning electron microscope (SEM) photographs revealed the development of heat affected zone (HAZ), white layer, melted droplet, craters, re-solidified material, ridge-rich surface and voids as well as cavities around the end-boundary surfaces of a blind hole. Composition analysis through energy dispersive spectroscopy (EDS) indicated the oxygen content on the machined surface because electrolyte breakdown causes oxidation to take place at elevated temperatures across the machining zone. Moreover, carbide precipitation like TiC was found in the melting zone of the drilled hole, as revealed by X-ray diffraction (XRD) analyses, which has the affinity to reduce the SMA properties in HAZ. </jats:p>

Topics
  • impedance spectroscopy
  • surface
  • molybdenum
  • nickel
  • scanning electron microscopy
  • x-ray diffraction
  • Oxygen
  • carbide
  • Sodium
  • precipitation
  • titanium
  • Energy-dispersive X-ray spectroscopy
  • void
  • oxygen content