Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Balaji, N. S.

  • Google
  • 1
  • 4
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023EXPERIMENTAL INVESTIGATION ON MECHANICAL PROPERTIES OF FDM-BASED NYLON CARBON PARTS USING ANN APPROACH11citations

Places of action

Chart of shared publication
Kumar, M. Saravana
1 / 6 shared
Asokan, P.
1 / 2 shared
Velmurugan, C.
1 / 3 shared
Sivakumar, M.
1 / 6 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kumar, M. Saravana
  • Asokan, P.
  • Velmurugan, C.
  • Sivakumar, M.
OrganizationsLocationPeople

article

EXPERIMENTAL INVESTIGATION ON MECHANICAL PROPERTIES OF FDM-BASED NYLON CARBON PARTS USING ANN APPROACH

  • Kumar, M. Saravana
  • Asokan, P.
  • Velmurugan, C.
  • Balaji, N. S.
  • Sivakumar, M.
Abstract

<jats:p> The implementation of the fused deposition modeling (FDM) technique in the production system is mainly due to its flexibility and ability to fabricate complex 3D prototypes and geometries. However, the mechanical strength of the printed parts needs to be investigated which was influenced by the process parameters such as layer thickness (LT), raster angle (RA), and Infill Density (ID). Therefore, these process parameters need to be optimized to attain better mechanical strength from the FDM printed parts. In this research, ePA-CF filament material was used to fabricate the specimens based on the selected process parameters such as LT (0.07, 0.14, and 0.20[Formula: see text]mm), RA (0<jats:sup>∘</jats:sup>, 45<jats:sup>∘</jats:sup>, and 90<jats:sup>∘</jats:sup>) and ID (50%, 75%, and 100%). The artificial neural network (ANN) method was implemented to determine the influential printing process parameters. Tensile, flexural, and impact tests were considered as the response parameters based on the various combination of the input parameters. It was concluded that the printing of nylon carbon parts using [Formula: see text][Formula: see text]mm, [Formula: see text], [Formula: see text] retains improved tensile strength of 66 MPa, flexural strength of 87[Formula: see text]MPa and impact strength of 12.5[Formula: see text]KJ/m<jats:sup>2</jats:sup>. Further, the propagation of cracks and the mode of failure were examined using SEM fractography. These observations substantiate that the selection of an optimal combination of FDM parameters assists in enhancing the mechanical strength of the printed nylon carbon parts. </jats:p>

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • Carbon
  • scanning electron microscopy
  • crack
  • strength
  • flexural strength
  • impact test
  • tensile strength
  • fractography