Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sonia, Pankaj

  • Google
  • 1
  • 5
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023FABRICATION AND CHARACTERIZATION OF MAGNESIUM-BASED Mg-TITANIA SURFACE COMPOSITE FOR BIOIMPLANTS9citations

Places of action

Chart of shared publication
Singh, Rajesh
1 / 6 shared
Lade, Jayahari
1 / 1 shared
Jain, Jinesh K.
1 / 1 shared
Saxena, Kuldeep Kumar
1 / 4 shared
Malik, Vinayak
1 / 6 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Singh, Rajesh
  • Lade, Jayahari
  • Jain, Jinesh K.
  • Saxena, Kuldeep Kumar
  • Malik, Vinayak
OrganizationsLocationPeople

article

FABRICATION AND CHARACTERIZATION OF MAGNESIUM-BASED Mg-TITANIA SURFACE COMPOSITE FOR BIOIMPLANTS

  • Singh, Rajesh
  • Lade, Jayahari
  • Jain, Jinesh K.
  • Saxena, Kuldeep Kumar
  • Sonia, Pankaj
  • Malik, Vinayak
Abstract

<jats:p> Magnesium and its alloys have become a great sparking topic of research due to their excellent biocompatible and biodegradable behavior. Magnesium and several biocompatible alloying elements were developed long back. The trends are to develop a surface composite of as-cast Mg alloys to control the degradation behavior. In this work, the surface composites of AZ31–TiO2 were developed by friction stir processing (FSP). The influence of spindle speed or tool rotation speed and number of processing passes on mechanical and microstructural performance were analyzed. The tool rotation speeds 720, 1050, 1550 and 2260[Formula: see text]RPM with pass 1, pass 2 and pass 3 were considered. The FSP workpiece was analyzed by microstructure and universal testing machine and the significant improvement in grain refinement and hardness was observed. </jats:p>

Topics
  • surface
  • grain
  • Magnesium
  • Magnesium
  • composite
  • hardness
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy