People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Malik, Vinayak
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023FRICTION STIR PROCESSING AND CLADDING: AN INNOVATIVE SURFACE ENGINEERING TECHNIQUE TO TAILOR MAGNESIUM-BASED ALLOYS FOR BIOMEDICAL IMPLANTScitations
- 2023EXPERIMENTAL STUDY ON THE SURFACE ROUGHNESS AND OPTIMIZATION OF CUTTING PARAMETERS IN THE HARD TURNING USING BIOCOMPATIBLE TiAlN-COATED AND UNCOATED CARBIDE INSERTScitations
- 2023FABRICATION AND CHARACTERIZATION OF MAGNESIUM-BASED Mg-TITANIA SURFACE COMPOSITE FOR BIOIMPLANTScitations
- 2022Energy-efficient method for developing in-situ Al-Cu metal matrix composites using microwave sintering and friction stir processingcitations
- 2022Modeling and Prediction of Grain Size and Hardness of ZE41/ZrO$$_2$$ Nano-surface Composite Using Multiple Regression, Power Law and Artificial Intelligence Techniquescitations
- 2020Investigations on friction stir joining of 3D printed parts to overcome bed size limitation and enhance joint quality for unmanned aircraft systemscitations
Places of action
Organizations | Location | People |
---|
article
EXPERIMENTAL STUDY ON THE SURFACE ROUGHNESS AND OPTIMIZATION OF CUTTING PARAMETERS IN THE HARD TURNING USING BIOCOMPATIBLE TiAlN-COATED AND UNCOATED CARBIDE INSERTS
Abstract
<jats:p> Machining of difficult-to-cut materials has always been a focus of research. In terms of surface roughness, it is one of the most important machinability indicators used to evaluate the performance of machining processes. This research aims to investigate the effect of biocompatible TiAlN-coated and uncoated carbide inserts, as well as the effect of cutting parameters such as feed, rotational speed, and depth of cut on surface roughness in the hard turning of M2 tool steel at 64 HRC. The central composite design is used to create the experimental layout. Surface roughness values are measured using separate experiments for coated and uncoated inserts. A quadratic model is selected, and an analysis of variance (ANOVA) is performed to test the adequacy of the developed model. From the ANOVA, it is found that feed and rotational speed are the most significant parameter while hard turning with TiAlN-coated and uncoated inserts, respectively. Cutting parameters are ranked according to their importance using the Pareto chart. The composite desirability function is employed to determine the optimal setting of cutting parameters to minimize the surface roughness and a confirmation experiment is conducted to validate the optimization results. Confirmation results are very close to the predicted value and the error between experimental and predicted results are 7.93% and 9.36% with TiAlN-coated and uncoated carbide inserts, respectively. TiAlN-coated carbide insert gives better surface roughness compared to an uncoated carbide insert. </jats:p>