Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pesode, Pralhad

  • Google
  • 3
  • 4
  • 131

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023A review—metastable β titanium alloy for biomedical applications100citations
  • 2023COMPARISON AND PERFORMANCE OF α, α+β AND β TITANIUM ALLOYS FOR BIOMEDICAL APPLICATIONS13citations
  • 2023Recent Advances on Biocompatible coating on Magnesium alloys by Micro Arc Oxidation Technique18citations

Places of action

Chart of shared publication
Kolekar, Snehal
1 / 1 shared
Mane, Yogesh
1 / 1 shared
Dayane, Shailendra
1 / 1 shared
Mohammed, Kahtan A.
1 / 10 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kolekar, Snehal
  • Mane, Yogesh
  • Dayane, Shailendra
  • Mohammed, Kahtan A.
OrganizationsLocationPeople

article

COMPARISON AND PERFORMANCE OF α, α+β AND β TITANIUM ALLOYS FOR BIOMEDICAL APPLICATIONS

  • Pesode, Pralhad
Abstract

<jats:p> As implant materials, titanium and its alloys have been extensively utilized because of their exceptional mechanical properties and biocompatibility. Despite this, corporations and researchers alike have kept up their aggressive pursuit of better alloys since there are still issues that require immediate attention. One of these causes a problem with stress shielding as a noticeable variation in the elastic modulus of the implant material. Ti alloys release harmful ions after extended usage. The poor bioactivity of the Ti alloy surface slows the healing process. In order to address these problems, additional research has concentrated on developing Ti alloys for the 21st century that contain a more suitable phase and change the surface of the alloy from inherently bioinert to bioactive. This study assesses the knowledge presently existing on the biological, chemical, mechanical, and electrochemical characteristics of important [Formula: see text]-Ti alloys created in recent years with the objective to provide scientific justification for using [Formula: see text]-titanium-based alloys as a substitute for cpTi. Dental implants might be made using [Formula: see text]-Ti alloys as an alternative. The enhanced alloy qualities, which include a lower modulus of elasticity, improved strength, suitable biocompatibility, and good abrasion and excellent resistance to corrosion, offer the essential proof. Additionally, structural, chemical, and thermomechanical modifications to [Formula: see text]-Ti alloys allow for the production of materials that may be tailored to the needs of unique instances for clinical practises. By researching the paper, the performance and attributes of [Formula: see text]-titanium alloy are compared to those of other forms of titanium alloy, such as [Formula: see text] titanium alloys. To support their usage as cpTi substitutes, in vivo studies are required to assess new [Formula: see text]-titanium alloys. </jats:p>

Topics
  • surface
  • corrosion
  • phase
  • strength
  • elasticity
  • titanium
  • titanium alloy
  • biocompatibility
  • bioactivity