People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Senthilkumar, V.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Thermal Adsorption and Corrosion Characteristic Study of Copper Hybrid Nanocomposite Synthesized by Powder Metallurgy Routecitations
- 2021EFFECTS OF PARTICLE SIZE AND SINTERING TEMPERATURE ON SUPERELASTICITY BEHAVIOR OF NiTi SHAPE MEMORY ALLOY USING NANOINDENTATIONcitations
- 2021Generative Design and Topology Optimization of Analysis and Repair Work of Industrial Robot Arm Manufactured Using Additive Manufacturing Technologycitations
- 2014Modelling and Analysis of Electrical Discharge Alloying through Taguchi Techniquecitations
- 2014Development of carbide intermetallic layer by electric discharge alloying on AISI-D2 tool steel and its wear resistancecitations
- 2012Mathematical Modeling of Machining Parameters in Electrical Discharge Machining with Cu-B<sub>4</sub>C Composite Electrodecitations
- 2012Prediction of flow stress during hot deformation of MA'ed hybrid aluminium nanocomposite employing artificial neural network and Arrhenius constitutive modelcitations
- 2011Constitutive Modeling for the Prediction of Peak Stress in Hot Deformation Processing of Al Alloy Based Nanocompositecitations
- 2008Influence of titanium carbide particles addition on the forging behaviour of powder metallurgy composite steelscitations
- 2007Some Aspects on Hot Forging Features of P/M Sintered High-Strength Titanium Carbide Composite Steel Preforms Under Different Stress State Conditionscitations
Places of action
Organizations | Location | People |
---|
article
EFFECTS OF PARTICLE SIZE AND SINTERING TEMPERATURE ON SUPERELASTICITY BEHAVIOR OF NiTi SHAPE MEMORY ALLOY USING NANOINDENTATION
Abstract
<jats:p> The present study investigates the superelasticity properties of spark plasma sintered (SPS) nickel titanium shape memory alloy (NiTi SMA) with the influence of sintering temperature and particle size. The nanoindentation is conducted on the surface of the NiTi SMA at various loads such as 100, 300 and 500[Formula: see text]mN. The nanoindentation technique determines the quantitative results of elasto-plastic properties such as depth recovery in the form of superelasticity, stiffness, hardness and work recovery ratio from load–depth ([Formula: see text]–[Formula: see text]) data during loading and unloading of the indenter. Experimental findings show that the depth and work recovery ratio increases with the decrease of indentation load and particle size. In contrast, increasing the sintering temperature exhibited a better depth and work recovery due to the removal of pores which could enhance the reverse transformation. The contact stiffness is influenced by [Formula: see text] which leads to attain a maximum stiffness at the highest load (500[Formula: see text]mN) and particle size (45[Formula: see text][Formula: see text]m) along with the lowest sintering temperature (700<jats:sup>∘</jats:sup>C). NiTi alloy exhibited a maximum hardness of 9.46[Formula: see text]GPa when subjected to indent at the lowest load and particle size sintered at 800<jats:sup>∘</jats:sup>C. The present study reveals a better superelastic behavior in NiTi SMA by reducing the particle size and indentation load associated with the enhancement of sintering temperature. </jats:p>