Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Torres, J.

  • Google
  • 6
  • 46
  • 69

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2022OP02 The breastmilk proteomics of women with Inflammatory Bowel Disease (IBD) and its impact on fecal calprotectin and microbiota composition in their babies1citations
  • 2019Massless Dirac fermions in III-V semiconductor quantum wells20citations
  • 2017Estudo dos parâmetros de controlo de um sistema laboratorial de laser claddingcitations
  • 2006Template synthesis of carbon nanotubes from porous alumina matrix on silicon12citations
  • 2006Fabrication of SOI photonic crystal slabs by soft UV-nanoimprint lithography15citations
  • 2002POROUS SILICON DIELECTRIC FUNCTION MODELING FROM EFFECTIVE MEDIUM THEORIES21citations

Places of action

Chart of shared publication
Sabino, J. Guedelha
1 / 1 shared
Barré, A.
1 / 1 shared
Eisele, C.
1 / 1 shared
Tarassishin, L.
1 / 1 shared
Agrawal, M.
1 / 3 shared
Debebe, A.
1 / 1 shared
Rendon, A.
1 / 1 shared
Stone, J.
1 / 2 shared
Dubinsky, M.
1 / 1 shared
Colombel, J. F.
1 / 1 shared
Peter, I.
1 / 2 shared
Hawkins, K.
1 / 1 shared
Hu, J.
1 / 32 shared
Gavrilenko, V.
1 / 2 shared
Maremyanin, K.
1 / 1 shared
Teppe, Frederic
1 / 7 shared
Consejo, C.
1 / 1 shared
Ruffenach, S.
1 / 2 shared
Spirin, K.
1 / 1 shared
Desrat, W.
1 / 1 shared
Krishtopenko, Sergey S.
1 / 2 shared
Boissier, G.
1 / 3 shared
Gonzalez-Posada, F.
1 / 4 shared
Zaknoune, M.
1 / 4 shared
Knap, W.
1 / 4 shared
Tournié, E.
1 / 10 shared
Jouault, Benoit
1 / 5 shared
Valente, C.
1 / 2 shared
Morgado, Teresa
1 / 7 shared
Navas, Helena
1 / 3 shared
Tessier, Pierre-Yves
1 / 18 shared
Coronel, P.
1 / 1 shared
Minea, T.
1 / 8 shared
Dubosc, M.
1 / 1 shared
Gras, R.
1 / 8 shared
Duvail, Jean-Luc
1 / 11 shared
Cagnon, L.
1 / 6 shared
Gerace, Dario
1 / 11 shared
Roy, E.
1 / 1 shared
Andreani, Lucio
1 / 10 shared
Belotti, Michele
1 / 4 shared
Pepin, A.
1 / 2 shared
Galli, Matteo
1 / 11 shared
Chen, Y.
1 / 71 shared
Giraldo, J. J.
1 / 1 shared
Campos, A. M.
1 / 1 shared
Chart of publication period
2022
2019
2017
2006
2002

Co-Authors (by relevance)

  • Sabino, J. Guedelha
  • Barré, A.
  • Eisele, C.
  • Tarassishin, L.
  • Agrawal, M.
  • Debebe, A.
  • Rendon, A.
  • Stone, J.
  • Dubinsky, M.
  • Colombel, J. F.
  • Peter, I.
  • Hawkins, K.
  • Hu, J.
  • Gavrilenko, V.
  • Maremyanin, K.
  • Teppe, Frederic
  • Consejo, C.
  • Ruffenach, S.
  • Spirin, K.
  • Desrat, W.
  • Krishtopenko, Sergey S.
  • Boissier, G.
  • Gonzalez-Posada, F.
  • Zaknoune, M.
  • Knap, W.
  • Tournié, E.
  • Jouault, Benoit
  • Valente, C.
  • Morgado, Teresa
  • Navas, Helena
  • Tessier, Pierre-Yves
  • Coronel, P.
  • Minea, T.
  • Dubosc, M.
  • Gras, R.
  • Duvail, Jean-Luc
  • Cagnon, L.
  • Gerace, Dario
  • Roy, E.
  • Andreani, Lucio
  • Belotti, Michele
  • Pepin, A.
  • Galli, Matteo
  • Chen, Y.
  • Giraldo, J. J.
  • Campos, A. M.
OrganizationsLocationPeople

article

POROUS SILICON DIELECTRIC FUNCTION MODELING FROM EFFECTIVE MEDIUM THEORIES

  • Torres, J.
  • Giraldo, J. J.
  • Campos, A. M.
Abstract

<jats:p> The spectral variation of the effective dielectric constant in porous silicon thin films is modeled using effective medium theories. The pores in the material are supposed to be spheroid prolate inclusions in a homogeneous matrix. We employ modified Maxwell–Garnett and Bruggeman expressions obtained from previous work. Fitting to experimental reflectance spectra and the refractive index at the visible spectral range is satisfactory. Best results in both models are obtained using the spheroidal inclusions of 0.9 eccentricity. The best adjusted porosity values for two samples with different parameters of preparation are 47% with Bruggeman's expression and 67% with Maxwell–Garnett's expression, which are very close to the experimental ones of 44% and 67% respectively, obtained through gravimetric methods. Our model is useful for determining and for checking the influence of the preparation parameters on the optical and structural properties. </jats:p>

Topics
  • porous
  • impedance spectroscopy
  • pore
  • inclusion
  • thin film
  • dielectric constant
  • Silicon
  • porosity