Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kumar, Raj

  • Google
  • 13
  • 60
  • 92

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2024Wide-angle and polarization-insensitive perfect metamaterial absorber5citations
  • 2023Control of skyrmion chirality in Ta/FeCoB/TaO$_x$ trilayers by TaO$_x$ oxidation and FeCoB thickness2citations
  • 2023Control of skyrmion chirality in Ta/FeCoB/TaO$_x$ trilayers by TaO$_x$ oxidation and FeCoB thickness2citations
  • 2023Tuning of Structural and Morphological Characteristics of V<sub>2</sub>O<sub>5</sub> Thin Films Using Low Energy 16 keV N + for Optical and Wetting Applications4citations
  • 2023Performance analysis of various training algorithms of deep learning based controller5citations
  • 2022Investigation on Mechanical Durability Properties of High-Performance Concrete with Nanosilica and Copper Slag2citations
  • 2022Platinum on Oxidized Graphene Sheets: A Bifunctional Electrocatalyst for Hydrogen Oxidation Reaction and Methanol Oxidation Reaction1citations
  • 2021Impact of post annealing and hydrogen implantation on functional properties of Cu2O thin films for photovoltaic applications13citations
  • 2020Drying kinetics and acoustic properties of soft porous polymer materials15citations
  • 2020Detection of crack in plywood using digital holography interferometrycitations
  • 2020Storage moduli and porosity of soft PDMS polyMIPEs can be controlled independently using thiol-ene click chemistry17citations
  • 2019Nitrogen-Doped Cu2O Thin Films for Photovoltaic Applications25citations
  • 2019Settlement Analysis of Recycled Concrete Fine Aggregate Blended Soils using Geostudio1citations

Places of action

Chart of shared publication
Singh, Bipin K.
1 / 1 shared
Singh, Dr.
1 / 1 shared
Ramani, Umang
1 / 1 shared
Kumar, Hemant
1 / 4 shared
Kumar, Sanket
1 / 1 shared
Stashkevich, Andrey
2 / 3 shared
Baraduc, Claire
2 / 3 shared
Belmeguenai, Mohamed
2 / 8 shared
Roussigné, Yves
2 / 10 shared
Lovery, Bertrand
2 / 2 shared
Chérif, S. M.
2 / 2 shared
Benguettat-El Mokhtari, I.
1 / 1 shared
Auffret, Stéphane
2 / 7 shared
Béa, Hélène
1 / 2 shared
Joumard, Isabelle
2 / 7 shared
Fillion, C. E.
2 / 2 shared
Ranno, Laurent
2 / 10 shared
Mokhtari, I. Benguettat-El
1 / 1 shared
Kumar, Tanuj
1 / 3 shared
Jasrotia, Priya
1 / 1 shared
Gupta, Rajeev
1 / 9 shared
Priya, Bhanu
1 / 1 shared
Chaudhary, Dhirendra K.
1 / 1 shared
Verma, Ajay Singh
1 / 1 shared
Prasad, Bhawesh
1 / 1 shared
Natarajan, Suganya
1 / 2 shared
Loganathan, Ganesh Babu
1 / 3 shared
Kumar, Sanjeev
1 / 20 shared
Singh, Rahul
1 / 8 shared
Mahseena, Akter Meem
1 / 1 shared
Rajput, Vinod Singh
1 / 3 shared
Sakthi, T.
1 / 2 shared
Inam, Muhammad Ali
1 / 2 shared
Aurangzeb, Junejo
1 / 1 shared
Khan, Rizwan
1 / 6 shared
Abbasi, Irfan Ahmed
1 / 1 shared
Larik, Rimsha
1 / 2 shared
Parkash, Dr. Anand
1 / 2 shared
Svensson, Bengt Gunnar
1 / 4 shared
Bergum, Kristin
2 / 2 shared
Riise, Heine Nygard
1 / 2 shared
Galeckas, Augustinas
1 / 10 shared
Monakhov, Eduard
1 / 8 shared
Poncelet, Olivier
1 / 8 shared
Marre, Samuel
1 / 10 shared
Mondain-Monval, Olivier
2 / 5 shared
Jin, Y.
1 / 7 shared
Brunet, Thomas
2 / 10 shared
Leng, Jacques
1 / 4 shared
Dwivedi, Gaurav
1 / 1 shared
Rishi, Kabir
1 / 1 shared
Beaucage, Gregory
1 / 2 shared
Ayres, Neil
1 / 1 shared
Mckenzie, Tucker, J.
1 / 1 shared
Heaton, Paul, S.
1 / 1 shared
Chilibon, Irinela
1 / 3 shared
Foss, Sean Erik
1 / 2 shared
Monakhov, Edouard
1 / 1 shared
Nordseth, Ørnulf
1 / 4 shared
Bhushan, J. Y. V. Shiva
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020
2019

Co-Authors (by relevance)

  • Singh, Bipin K.
  • Singh, Dr.
  • Ramani, Umang
  • Kumar, Hemant
  • Kumar, Sanket
  • Stashkevich, Andrey
  • Baraduc, Claire
  • Belmeguenai, Mohamed
  • Roussigné, Yves
  • Lovery, Bertrand
  • Chérif, S. M.
  • Benguettat-El Mokhtari, I.
  • Auffret, Stéphane
  • Béa, Hélène
  • Joumard, Isabelle
  • Fillion, C. E.
  • Ranno, Laurent
  • Mokhtari, I. Benguettat-El
  • Kumar, Tanuj
  • Jasrotia, Priya
  • Gupta, Rajeev
  • Priya, Bhanu
  • Chaudhary, Dhirendra K.
  • Verma, Ajay Singh
  • Prasad, Bhawesh
  • Natarajan, Suganya
  • Loganathan, Ganesh Babu
  • Kumar, Sanjeev
  • Singh, Rahul
  • Mahseena, Akter Meem
  • Rajput, Vinod Singh
  • Sakthi, T.
  • Inam, Muhammad Ali
  • Aurangzeb, Junejo
  • Khan, Rizwan
  • Abbasi, Irfan Ahmed
  • Larik, Rimsha
  • Parkash, Dr. Anand
  • Svensson, Bengt Gunnar
  • Bergum, Kristin
  • Riise, Heine Nygard
  • Galeckas, Augustinas
  • Monakhov, Eduard
  • Poncelet, Olivier
  • Marre, Samuel
  • Mondain-Monval, Olivier
  • Jin, Y.
  • Brunet, Thomas
  • Leng, Jacques
  • Dwivedi, Gaurav
  • Rishi, Kabir
  • Beaucage, Gregory
  • Ayres, Neil
  • Mckenzie, Tucker, J.
  • Heaton, Paul, S.
  • Chilibon, Irinela
  • Foss, Sean Erik
  • Monakhov, Edouard
  • Nordseth, Ørnulf
  • Bhushan, J. Y. V. Shiva
OrganizationsLocationPeople

article

Wide-angle and polarization-insensitive perfect metamaterial absorber

  • Singh, Bipin K.
  • Singh, Dr.
  • Ramani, Umang
  • Kumar, Hemant
  • Kumar, Raj
  • Kumar, Sanket
Abstract

<jats:p> We propose a cross-shaped resonator design of a metamaterial (MTM) absorber that shows a 98% average absorbance in the range of 400–1100[Formula: see text]nm. This design consists of three layers: a tungsten-based cross-shaped on the top, silicon dioxide (SiO<jats:sub>2</jats:sub>) in the middle layer, and a tungsten layer at the bottom. The finite integration technique (FIT) method is used to simulate the metamaterial absorber’s performance. We have observed the absorber’s performance on the different thicknesses of a dielectric layer. We have presented the absorption spectrum for transverse electric (TE) and transverse magnetic (TM) modes for different polarization angles (0°–90°) and incident angles (0°–60°). Additionally, we have investigated the short-circuit current density for different dielectric layer thicknesses and different incidence angles. This is theoretically analogous to parametric studies. The universal AM 1.5 solar spectrum properties have been used to investigate the feasibility of the proposed MTM absorber as a solar cell. The proposed MTM has many potential uses, including for solar cells. </jats:p>

Topics
  • density
  • impedance spectroscopy
  • Silicon
  • current density
  • tungsten
  • metamaterial
  • additive manufacturing