People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chroneos, Alexander
University of Thessaly
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Using the Bond Valence Sum Model to calculate Li-diffusion pathways in Silicene with MgX2 (X=Cl, Br, I) substrates
- 2023Efficient and Stable Air-Processed Ternary Organic Solar Cells Incorporating Gallium-Porphyrin as an Electron Cascade Material.
- 2023A density functional theory study of the CiN and the CiNOi complexes in siliconcitations
- 2022DFT insights into the electronic structure, mechanical behaviour, lattice dynamics and defect processes in the first Sc-based MAX phase Sc2SnCcitations
- 2022Carbon Nanodots as Electron Transport Materials in Organic Light Emitting Diodes and Solar Cells.
- 2022Core–shell carbon-polymer quantum dot passivation for near infrared perovskite light emitting diodescitations
- 2021Defect processes in halogen doped SnO2citations
- 2020The interstitial carbon–dioxygen center in irradiated siliconcitations
- 2019Impact of local composition on the energetics of E-centres in Si1−xGex alloyscitations
- 2019Engineering Transport in Manganites by Tuning Local Nonstoichiometry in Grain Boundariescitations
- 2018Smartphones as an integrated platform for monitoring driver behaviour: The role of sensor fusion and connectivitycitations
- 2017M3AlC2 MAX phases for nuclear applications
- 2017Defect processes of Ti3AC2 MAX phases: Insights from atomistic modelling
Places of action
Organizations | Location | People |
---|
article
A density functional theory study of the CiN and the CiNOi complexes in silicon
Abstract
This is the author accepted manuscript. The final version is available from World Scientific Publishing via the DOI in this record ; Nitrogen (N) is an important impurity in silicon (Si), which associates with impurities as well as with other defects to form defect complexes. The knowledge of the properties and behavior of defect structures containing carbon (C), N and oxygen (O) is important for the Si-based electronic technology. Here, we employ density functional theory (DFT) calculations to investigate the association of nitrogen with carbon and oxygen defects to form the CiN and CiNOi defects. We provide evidence of the formation of these defects and additional details of their structure, their density of states (DOS) and Bader charges. Therefore, CiN and CiNOi defects are now well characterized.