Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ibrir, Miloud

  • Google
  • 2
  • 5
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Effect of ZnO doping co-carried out by Co-Cu on nonlinear optical properties prepared by the spin coating method3citations
  • 2015Theoretical investigation of elastic and phononic properties of Zn1−xBexO alloys5citations

Places of action

Chart of shared publication
Bouarissa, Nadir
1 / 1 shared
Meglali, Omar
1 / 1 shared
Peña-Garcia, R.
1 / 1 shared
Mohammedi, Abdelkader
1 / 1 shared
Marí, B.
1 / 18 shared
Chart of publication period
2024
2015

Co-Authors (by relevance)

  • Bouarissa, Nadir
  • Meglali, Omar
  • Peña-Garcia, R.
  • Mohammedi, Abdelkader
  • Marí, B.
OrganizationsLocationPeople

article

Theoretical investigation of elastic and phononic properties of Zn1−xBexO alloys

  • Ibrir, Miloud
Abstract

<jats:p> Our calculations were conducted within density functional theory (DFT) and density functional perturbation theory (DFPT) using norm-conserving pseudo-potential and the local density approximation. The elastic constants of [Formula: see text] were calculated, [Formula: see text], [Formula: see text] and [Formula: see text] increase with the increase of Be content, whereas the [Formula: see text] shows a non-monotonic variation and [Formula: see text] decreases when Be concentration increases. The values of bulk modulus [Formula: see text], Young’s modulus [Formula: see text] and shear modulus [Formula: see text] increase with the increase of Be content. Poisson’s ratio [Formula: see text] decreases with increased Be concentration. The ductility decreases with increasing Be concentration and the compressibility for [Formula: see text] along [Formula: see text]-axis is smaller than along [Formula: see text]-axis. Phonon dispersion curves show that [Formula: see text] is dynamically stable (no soft modes). Quantities such as refractive index, Born effective charge, dielectric constants and optical phonon frequencies were calculated as a function of the Be molar fraction [Formula: see text]. The agreement between the present results and the known data that are available only for ZnO and BeO is generally satisfactory. Our results for [Formula: see text] [Formula: see text] are predictions. </jats:p>

Topics
  • density
  • impedance spectroscopy
  • dispersion
  • theory
  • dielectric constant
  • density functional theory
  • ductility
  • bulk modulus