Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ganie, Abdul Hamid

  • Google
  • 1
  • 4
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Unsteady non-axisymmetric MHD Homann stagnation point flow of CNTs-suspended nanofluid over convective surface with radiation using Yamada–Ota model28citations

Places of action

Chart of shared publication
Albaidani, Masha M.
1 / 1 shared
Alharthi, N. S.
1 / 1 shared
Mahmood, Zafar
1 / 2 shared
Khan, Umar
1 / 9 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Albaidani, Masha M.
  • Alharthi, N. S.
  • Mahmood, Zafar
  • Khan, Umar
OrganizationsLocationPeople

article

Unsteady non-axisymmetric MHD Homann stagnation point flow of CNTs-suspended nanofluid over convective surface with radiation using Yamada–Ota model

  • Albaidani, Masha M.
  • Alharthi, N. S.
  • Ganie, Abdul Hamid
  • Mahmood, Zafar
  • Khan, Umar
Abstract

<jats:p> The increasing number of ways in which carbon nanotubes (CNTs) may be used in business and technology has led to an explosion of interest in these tiny tubes. As a result, the Yamada–Ota model is used to investigate the unsteady, non-axisymmetric MHD Homann stagnation point of carbon nanotubes passing over a convective surface with nonlinear radiation. Consisting of single-walled and multi-walled carbon nanotubes that are suspended in water (H<jats:sub>2</jats:sub>O). The length of the nanomaterial is between [Formula: see text] nanometers, while its radius is between [Formula: see text]. The method of similarity transformation is altered so that it may be used to get the dimensionless system of differential equations from the mathematical model that is envisioned for PDEs. After that, approximate solutions are obtained using MATHEMATICA and the Shooting with RK-IV technique. In this paper, we provide a graphical discussion and a physical interpretation of the results of measures of practical significance as a function of key factors. The results indicated that an increase in the volume fraction led to a corresponding rise in the heat transfer rate. However, it is reduced by the magnetic energy that is supplied to it. Carbon nanoliquids with a single wall have a greater melting point than nanoliquids with multiple walls. Industrial and technological uses of the issue under examination span several fields, including aviation and health. The results of the interface velocity and heat transfer rate at the surface, as well as the solution of each profile, are shown graphically, along with an analysis of the effects of MHD on the flow and heat transfer characteristics of the fluid under the influence of radiation. </jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • nanotube