Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Parvin, F.

  • Google
  • 4
  • 10
  • 126

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2016Structural, elastic, and electronic properties of newly discovered Li2PtSi3 superconductor: Effect of transition metals27citations
  • 2014Zirconium metal-based MAX phases Zr2AC (A = Al, Si, P and S): A first-principles study55citations
  • 2013New MAX Phase Superconductor Ti2GeC: A First-principles Study38citations
  • 2010Superconductivity in Diamond-like BC3 Phase6citations

Places of action

Chart of shared publication
Islam, A.
2 / 7 shared
Ali, M.
2 / 47 shared
Zilani, M.
1 / 1 shared
Naqib, S.
2 / 4 shared
Hadi, M.
2 / 5 shared
Hadi, M. A.
1 / 6 shared
Roknuzzaman, M.
1 / 2 shared
Islam, A. K. M. A.
2 / 11 shared
Naqib, S. H.
1 / 9 shared
Ali, M. M.
1 / 2 shared
Chart of publication period
2016
2014
2013
2010

Co-Authors (by relevance)

  • Islam, A.
  • Ali, M.
  • Zilani, M.
  • Naqib, S.
  • Hadi, M.
  • Hadi, M. A.
  • Roknuzzaman, M.
  • Islam, A. K. M. A.
  • Naqib, S. H.
  • Ali, M. M.
OrganizationsLocationPeople

article

Zirconium metal-based MAX phases Zr2AC (A = Al, Si, P and S): A first-principles study

  • Islam, A.
  • Ali, M.
  • Parvin, F.
  • Naqib, S.
  • Hadi, M.
Abstract

We have investigated theoretical Vickers hardness, thermodynamic and optical properties of four zirconium metal-based MAX phases <span class="roman"> Zr</span><sub>2</sub><span class="roman">AC</span> (A = <span class="roman">Al</span>, <span class="roman">Si</span>, <span class="roman">P</span> and <span class="roman">S</span>) for the first time in addition to revisiting the structural, elastic and electronic properties. First-principles calculations are employed based on density functional theory (DFT) by means of the plane-wave pseudopotential method. The theoretical Vickers hardness has been estimated via the calculation of Mulliken bond populations and electronic density of states. The thermodynamic properties such as the temperature and pressure dependent bulk modulus, Debye temperature, specific heats and volume thermal expansion coefficient of all the compounds are derived from the quasi-harmonic Debye model. Further, the optical properties, e.g., dielectric functions, indices of refraction, absorption, energy loss function, reflectivity and optical conductivity of the nanolaminates have been calculated. The results are compared with available experiments and their various implications are discussed in detail. We have also shed light on the effect of different properties of <span class="roman">Zr</span><sub>2</sub><span class="roman">AC</span> as the A-group atom moves from <span class="roman">Al</span> to <span class="roman">S</span> across the periodic table.

Topics
  • density
  • compound
  • phase
  • theory
  • experiment
  • zirconium
  • hardness
  • thermal expansion
  • density functional theory
  • bulk modulus
  • specific heat