People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Joyce, H. J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2017On-Chip Andreev Devices: Hard Superconducting Gap and Quantum Transport in Ballistic Nb-In0.75 Ga0.25 As-Quantum-Well-Nb Josephson Junctions
- 2017The influence of atmosphere on the performance of pure-phase WZ and ZB InAs nanowire transistorscitations
- 2011III-V compound semiconductor nanowires for optoelectronic device applicationscitations
- 2009III-V compound semiconductor nanowires
- 2009III-V compound semiconductor nanowirescitations
- 2009Epitaxy of III-V semiconductor nanowires towards optoelectronic devices
- 2009Epitaxy of III-V semiconductor nanowires towards optoelectronic devices
Places of action
Organizations | Location | People |
---|
article
III-V compound semiconductor nanowires for optoelectronic device applications
Abstract
<p>GaAs and InP based III-V compound semiconductor nanowires were grown epitaxially on GaAs (or Si) (111)B and InP (111)B substrates, respectively, by metalorganic chemical vapor deposition using Au nanoparticles as catalyst. In this paper, we will give an overview of nanowire research activities in our group. In particular, the effects of growth parameters on the crystal structure and optical properties of various nanowires were studied in detail. We have successfully obtained defect-free GaAs nanowires with nearly intrinsic exciton lifetime and vertical straight nanowires on Si (111)B substrates. The crystal structure of InP nanowires, i.e., WZ or ZB, can also be engineered by carefully controlling the V/III ratio and catalyst size.</p>